

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China











# NHD-0108FZ-FL-YBW-33V3

## **Character Liquid Crystal Display Module**

NHD- Newhaven Display 0108- 1 Line x 8 Characters

FZ- Model

F- Transflective

L- Yellow/Green LED Backlight

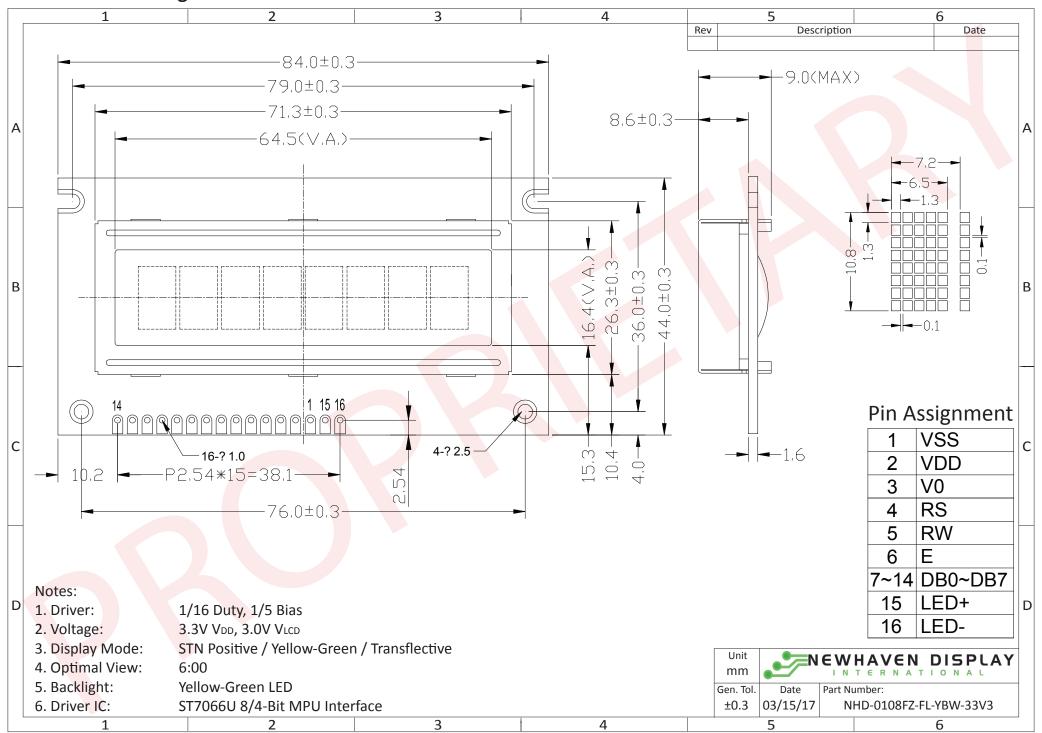
Y- STN- Yellow/Green
B- 6:00 Optimal View
W- Wide Temperature
33V3- 3.3 VDD, 3V Backlight

**RoHS Compliant** 

#### Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

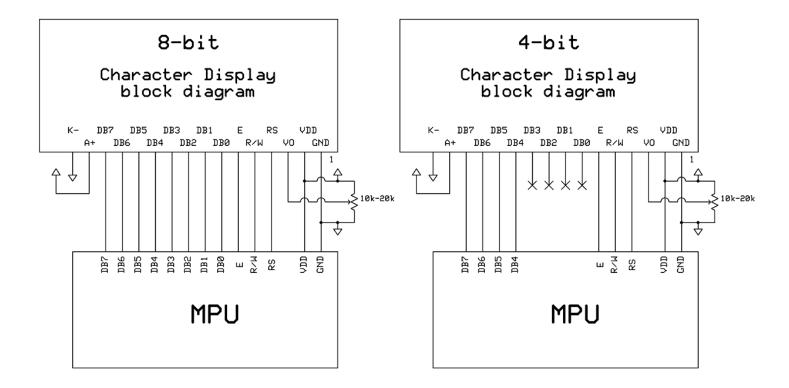
Ph: 847-844-8795 Fax: 847-844-8796


**Document Revision History** 

| Revision | Date    | Description                                            | Changed by |
|----------|---------|--------------------------------------------------------|------------|
| 0        | 2/1/12  | 3.3V LCD Implemented                                   | SB         |
| 1        | 3/15/17 | Mechanical Drawing, Electrical & Optical Char. Updated | SB         |

#### **Functions and Features**

- 1 line x 8 characters
- Built-in controller (ST7066U)
- +3.3V power supply
- 1/16 duty, 1/5 bias
- RoHS compliant


#### **Mechanical Drawing**



## **Pin Description and Wiring Diagram**

| Pin No. | Symbol    | <b>External Connection</b> | Function Description                                            |
|---------|-----------|----------------------------|-----------------------------------------------------------------|
| 1       | $V_{SS}$  | Power Supply               | Ground                                                          |
| 2       | $V_{DD}$  | Power Supply               | Supply Voltage for Logic (+3.3V)                                |
| 3       | $V_0$     | Adj. Power Supply          | Supply Voltage for Contrast (approx. 0.3V)                      |
| 4       | RS        | MPU                        | Register Select signal. RS=0: Command, RS=1: Data               |
| 5       | R/W       | MPU                        | Read/Write select signal, R/W=1: Read R/W: =0: Write            |
| 6       | Е         | MPU                        | Operation Enable signal. Falling edge triggered.                |
| 7-10    | DB0 – DB3 | MPU                        | Four low order bi-directional three-state data bus lines. These |
|         |           |                            | four are not used during 4-bit operation.                       |
| 11-14   | DB4 – DB7 | MPU                        | Four high order bi-directional three-state data bus lines.      |
| 15      | LED+      | Power Supply               | Backlight Anode (130mA)                                         |
| 16      | LED-      | Power Supply               | Backlight Cathode (Ground)                                      |

**Recommended LCD connector:** 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---



#### **Electrical Characteristics**

| Item                        | Symbol           | Condition              | Min.                   | Тур. | Max.                  | Unit |
|-----------------------------|------------------|------------------------|------------------------|------|-----------------------|------|
| Operating Temperature Range | T <sub>OP</sub>  | Absolute Max           | -20                    | -    | +70                   | °C   |
| Storage Temperature Range   | T <sub>ST</sub>  | Absolute Max           | -30                    | 1    | +80                   | °C   |
| Supply Voltage              | $V_{DD}$         | -                      | -                      | 3.3  | -                     | V    |
| Supply Current              | $I_{DD}$         | $V_{DD} = 3.3V$        | 0.5                    | 1.5  | 2.5                   | mA   |
| Supply for LCD (contrast)   | $V_{LCD}$        | T <sub>OP</sub> = 25°C | 2.8                    | 3.0  | 3.2                   | V    |
| "H" Level input             | $V_{IH}$         | -                      | 0.7 * V <sub>DD</sub>  | -    | $V_{DD}$              | V    |
| "L" Level input             | $V_{IL}$         | -                      | $V_{SS}$               | -    | 0.6                   | V    |
| "H" Level output            | V <sub>OH</sub>  | -                      | 0.75 * V <sub>DD</sub> | -    | $V_{DD}$              | V    |
| "L" Level output            | $V_{OL}$         | -                      | $V_{SS}$               | -    | 0.2 * V <sub>DD</sub> | V    |
|                             |                  |                        |                        |      |                       |      |
| Backlight Supply Voltage    | $V_{LED}$        | -                      | 2.8                    | 3.0  | 3.2                   | V    |
| Backlight Supply Current    | I <sub>LED</sub> | $V_{LED} = 3.0V$       | 120                    | 140  | 160                   | mA   |

#### **Optical Characteristics**

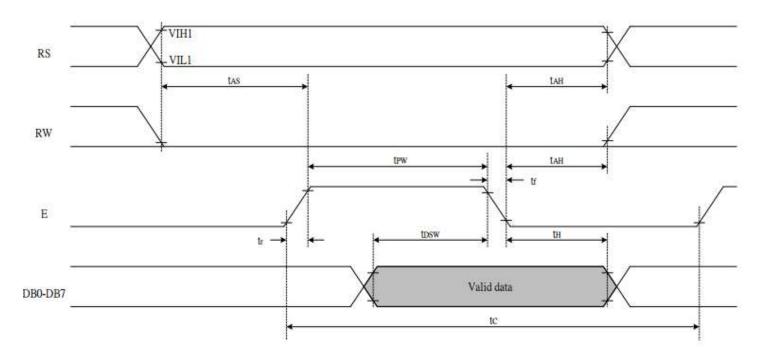
|                              | Ite  | em   | Symbol         | Condition              | Min. | Тур. | Max. | Unit |
|------------------------------|------|------|----------------|------------------------|------|------|------|------|
| Omtimos                      | Тор  |      | φΥ+            |                        | -    | 40   | -    | 0    |
| Optimal<br>Viewing<br>Angles | Bot  | tom  | φΥ-            | CR ≥ 2                 | -    | 60   | -    | 0    |
|                              | Left |      | θХ-            | CR ≥ 2                 | -    | 60   | -    | 0    |
| Angles                       | Righ | nt   | θХ+            |                        | -    | 60   | -    | ٥    |
| Contrast Rat                 | io   |      | CR             | -                      | 2    | 5    | -    | -    |
| Dosnonso T                   | ima  | Rise | $T_R$          | T - 25°C               | -    | 150  | 250  | ms   |
| Response Tir                 | ime  | Fall | T <sub>F</sub> | T <sub>OP</sub> = 25°C | -    | 200  | 300  | ms   |

#### **Controller Information**

Built-in ST7066U Controller.

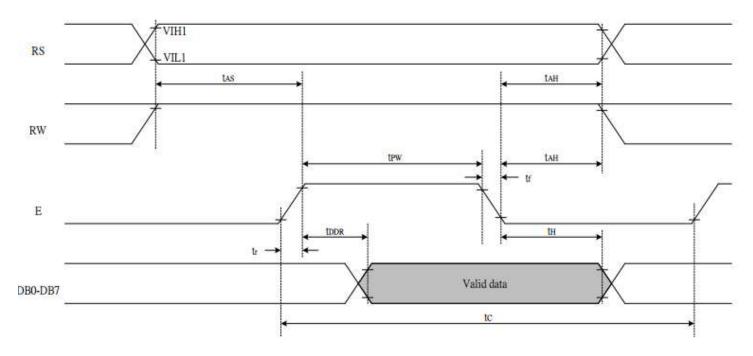
Please download specification at <a href="http://www.newhavendisplay.com/app">http://www.newhavendisplay.com/app</a> notes/ST7066U.pdf

#### Display character address code


| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|----|----|----|----|----|----|----|----|
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |

## **Table of Commands**

|                                  |    |     |     | Ins | tructi | ion co | ode |     | Execution |     |                                                                                                                                  |                        |
|----------------------------------|----|-----|-----|-----|--------|--------|-----|-----|-----------|-----|----------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Instruction                      | RS | R/W | DB7 | DB6 | DB5    | DB4    | DB3 | DB2 | DB1       | DB0 | Description                                                                                                                      | time (fosc=<br>270 KHZ |
| Clear<br>Display                 | 0  | 0   | 0   | 0   | 0      | 0      | 0   | 0   | 0         | 1   | Write "20H" to DDRAM and set DDRAM address to "00H" from AC                                                                      | 1.52ms                 |
| Return<br>Home                   | 0  | 0   | 0   | 0   | 0      | 0      | 0   | 0   | 1         | 1   | Set DDRAM Address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed. | 1.52ms                 |
| Entry mode<br>Set                | 0  | 0   | 0   | 0   | 0      | 0      | 0   | 1   | I/D       | SH  | Sets cursor move direction<br>and specifies display shift.<br>These parameters are<br>performed during data write<br>and read.   | 37μs                   |
| Display ON/<br>OFF control       | 0  | 0   | 0   | 0   | 0      | 0      | 1   | D   | С         | В   | D=1: Entire display on<br>C=1: Cursor on<br>B=1: Blinking cursor on                                                              | 37μs                   |
| Cursor or<br>Display<br>shift    | 0  | 0   | 0   | 0   | 0      | 1      | S/C | R/L | -         | 1   | Sets cursor moving and display shift control bit, and the direction without changing DDRAM data.                                 | 37μs                   |
| Function set                     | 0  | 0   | 0   | 0   | 1      | DL     | N   | F   | -         | ı   | DL: Interface data is 8/4 bits<br>N: Number of lines is 2/1<br>F: Font size is 5x11/5x8                                          | 37μs                   |
| Set<br>CGRAM<br>Address          | 0  | 0   | 0   | 1   | AC5    | AC4    | AC3 | AC2 | AC1       | AC0 | Set CGRAM address in address counter                                                                                             | 37μs                   |
| Set<br>DDRAM<br>Address          | 0  | 0   | 1   | AC6 | AC5    | AC4    | AC3 | AC2 | AC1       | AC0 | Set DDRAM address in address counter.                                                                                            | 37μs                   |
| Read busy<br>Flag and<br>Address | 0  | 1   | BF  | AC6 | AC5    | AC4    | AC3 | AC2 | AC1       | AC0 | Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.           | 0s                     |
| Write data<br>To Address         | 1  | 0   | D7  | D6  | D5     | D4     | D3  | D2  | D1        | D0  | Write data into internal RAM (DDRAM/CGRAM).                                                                                      | 37μs                   |
| Read data<br>From RAM            | 1  | 1   | D7  | D6  | D5     | D4     | D3  | D2  | D1        | D0  | Read data from internal RAM (DDRAM/CGRAM).                                                                                       | 37μs                   |


## **Timing Characteristics**

## Writing data from MPU to ST7066U



|                  | Write Mode (Writing data from MPU to ST7066U) |                 |      |   |    |    |  |  |  |  |
|------------------|-----------------------------------------------|-----------------|------|---|----|----|--|--|--|--|
| Tc               | Enable Cycle Time                             | Pin E           | 1200 | - | -  | ns |  |  |  |  |
| $T_{PW}$         | Enable Pulse Width                            | Pin E           | 460  | - | -  | ns |  |  |  |  |
| $T_R, T_F$       | Enable Rise/Fall Time                         | Pin E           | -    | - | 25 | ns |  |  |  |  |
| T <sub>AS</sub>  | Address Setup Time                            | Pins: RS,RW,E   | 0    | - | -  | ns |  |  |  |  |
| T <sub>AH</sub>  | Address Hold Time                             | Pins: RS,RW,E   | 10   | - | -  | ns |  |  |  |  |
| T <sub>DSW</sub> | Data Setup Time                               | Pins: DB0 - DB7 | 80   | - | -  | ns |  |  |  |  |
| T <sub>H</sub>   | Data Hold Time                                | Pins: DB0 - DB7 | 10   | - | -  | ns |  |  |  |  |

## Reading data from ST7066U to MPU



|                  | Read Mode (Reading Data from ST7066U to MPU) |                 |      |   |     |    |  |  |  |  |  |
|------------------|----------------------------------------------|-----------------|------|---|-----|----|--|--|--|--|--|
| T <sub>C</sub>   | Enable Cycle Time                            | Pin E           | 1200 | - | -   | ns |  |  |  |  |  |
| $T_PW$           | Enable Pulse Width                           | Pin E           | 480  | - | -   | ns |  |  |  |  |  |
| $T_R,T_F$        | Enable Rise/Fall Time                        | Pin E           | -    | - | 25  | ns |  |  |  |  |  |
| T <sub>AS</sub>  | Address Setup Time                           | Pins: RS,RW,E   | 0    | - | -   | ns |  |  |  |  |  |
| T <sub>AH</sub>  | Address Hold Time                            | Pins: RS,RW,E   | 10   | - | -   | ns |  |  |  |  |  |
| T <sub>DDR</sub> | Data Setup Time                              | Pins: DB0 - DB7 | -    | - | 320 | ns |  |  |  |  |  |
| T <sub>H</sub>   | Data Hold Time                               | Pins: DB0 - DB7 | 10   | - | -   | ns |  |  |  |  |  |

## **Built-in Font Table**

| 67-64<br>63-60 | 0000             | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----------------|------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0000           | CG<br>RAM<br>(1) |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0001           | (2)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0010           | (3)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0011           | (4)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0100           | (5)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0101           | (6)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0110           | (7)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0111           | (8)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1000           | (1)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1001           | (2)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1010           | (3)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1011           | (4)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1100           | (5)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1101           | (6)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1110           | (7)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1111           | (8)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

#### **Example Initialization Program**

```
8-bit Initialization:
/**********************
void command(char i)
     P1 = i;
                                   //put data on output Port
     D_I = 0;
                                   //D/I=LOW : send instruction
     R_W = 0;
                                   //R/W=LOW : Write
     E = 1;
     Delay(1);
                                   //enable pulse width >= 300ns
     E = 0;
                                   //Clock enable: falling edge
void write(char i)
     P1 = i;
                                   //put data on output Port
     D_I = 1;
                                  //D/I=HIGH : send data
                                  //R/W=LOW : Write
     R_W = 0;
     E = 1;
     Delay(1);
                                  //enable pulse width >= 300ns
     E = 0;
                                   //Clock enable: falling edge
void init()
     E = 0;
                                   //Wait >40 msec after power is applied
     Delay(100);
     command(0x30);
                                   //command 0x30 = Wake up
                                //must wait 5ms, busy flag not available
//command 0x30 = Wake up #2
//must wait 160us, busy flag not available
//command 0x30 = Wake up #3
//must wait 160us, busy flag not available
//Function set: 8-bit/2-line
//Set cursor
//Display ON; Cursor ON
//Entry mode set
                                   //must wait 5ms, busy flag not available
     Delay(30);
     command(0x30);
     Delay(10);
     command(0x30);
     Delay(10);
     command(0x38);
     command(0x10);
     command (0x0c);
     command (0x06);
                                   //Entry mode set
```

```
4-bit Initialization:
void command(char i)
     P1 = i;
                                //put data on output Port
                                //D/I=LOW : send instruction
     D_{I} = 0;
                               //R/W=LOW : Write
//Send lower 4 bits
     R_W = 0;
     Nybble();
                               //Shift over by 4 bits
     i = i << 4;
     P1 = i;
                                //put data on output Port
     Nybble();
                                 //Send upper 4 bits
/***********************************
void write(char i)
     P1 = i;
                                 //put data on output Port
     D_I = 1;
                                 //D/I=HIGH : send data
                               //R/W=LOW : Write
//Clock lower 4 bits
     R_W = 0;
     Nybble();
     i = i << 4;
                                //Shift over by 4 bits
     P1 = i;
                                 //put data on output Port
     Nybble();
                                 //Clock upper 4 bits
void Nybble()
     E = 1;
     Delay(1);
                                //enable pulse width >= 300ns
     E = 0;
                                 //Clock enable: falling edge
void init()
{
     P1 = 0;
     P3 = 0;
     Delay(100);
                                 //Wait >40 msec after power is applied
     P1 = 0x30;
                                 //put 0x30 on the output port
     Delay(30);
                                 //must wait 5ms, busy flag not available
     Nybble();
                                 //command 0x30 = Wake up
     Delay(10);
                                 //must wait 160us, busy flag not available
                                 //command 0x30 = Wake up #2
     Nybble();
                                 //must wait 160us, busy flag not available
     Delay(10);
                                //command 0x30 = Wake up #3
     Nybble();
                              //command 0x30 = Wake up #3
//can check busy flag now instead of delay
//put 0x20 on the output port
//Function set: 4-bit interface
//Function set: 4-bit/2-line
     Delay(10);
     P1 = 0x20;
     Nybble();
     command (0x28);
     command(0x10);
                                //Set cursor
                                 //Display ON; Blinking cursor
     command (0x0F);
     command (0x06);
                                 //Entry Mode set
```

## **Quality Information**

| Test Item                                | Content of Test                                                                                                                 | Test Condition                                                                         | Note |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|
| High Temperature storage                 | Endurance test applying the high storage temperature for a long time.                                                           | +80°C , 48 Hrs.                                                                        | 2    |
| Low Temperature storage                  | Endurance test applying the low storage temperature for a long time.                                                            | -30°C , 48 Hrs.                                                                        | 1,2  |
| High Temperature<br>Operation            | Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.                    | +70°C 48 Hrs.                                                                          | 2    |
| Low Temperature<br>Operation             | Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.                     | -20°C , 48 Hrs.                                                                        | 1,2  |
| High Temperature /<br>Humidity Operation | Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time. | +40°C, 90% RH, 48 Hrs.                                                                 | 1,2  |
| Thermal Shock resistance                 | Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.                  | 0°C,30min -> 25°C,5min -> 50°C,30min = 1 cycle 10 cycles                               |      |
| Vibration test                           | Endurance test applying vibration to simulate transportation and use.                                                           | 10-55Hz , 15mm amplitude.<br>60 sec in each of 3 directions<br>X,Y,Z<br>For 15 minutes | 3    |
| Static electricity test                  | Endurance test applying electric static discharge.                                                                              | VS=800V, RS=1.5k $\Omega$ , CS=100pF<br>One time                                       |      |

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

**Note 3:** Test performed on product itself, not inside a container.

#### **Precautions for using LCDs/LCMs**

See Precautions at <a href="https://www.newhavendisplay.com/specs/precautions.pdf">www.newhavendisplay.com/specs/precautions.pdf</a>

#### **Warranty Information and Terms & Conditions**

http://www.newhavendisplay.com/index.php?main\_page=terms