

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NHD-0208AZ-FSW-GBW-33V3

Character Liquid Crystal Display Module

NHD- Newhaven Display 0208- 2 Lines x 8 Characters

AZ- Model F- Transflective

SW- Side White LED Backlight

G- STN-Gray

B- 6:00 Optimal View
W- Wide Temperature
33V3- 3.3V LCD, 3.0V Backlight

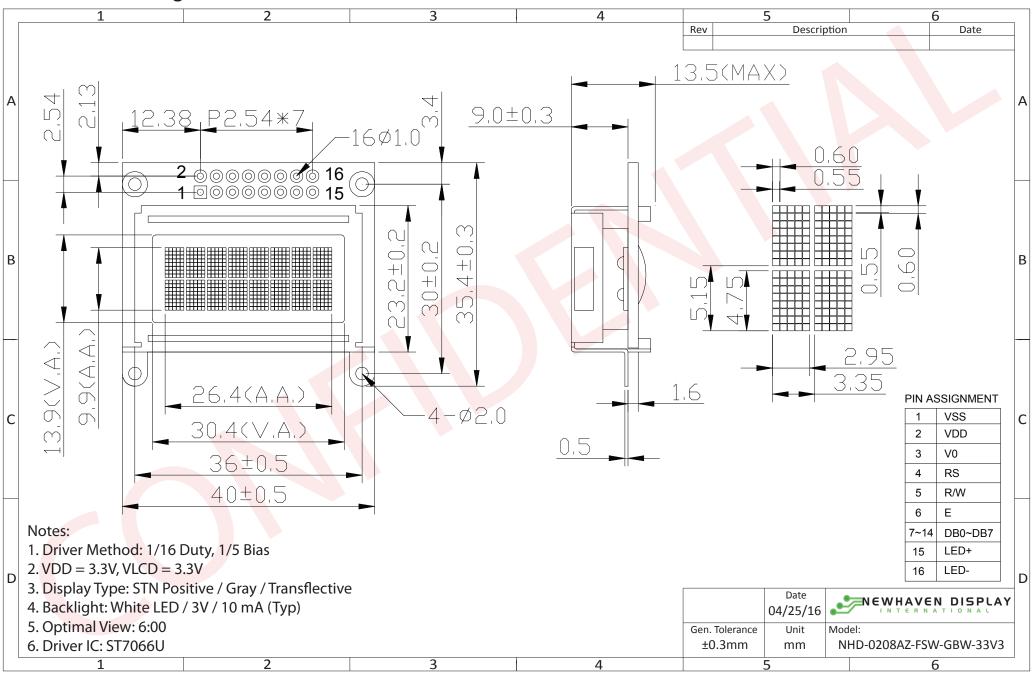
RoHS Compliant

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

<u>www.newhavendisplay.com</u> nhtech@newhavendisplay.com nhsales@newhavendisplay.com

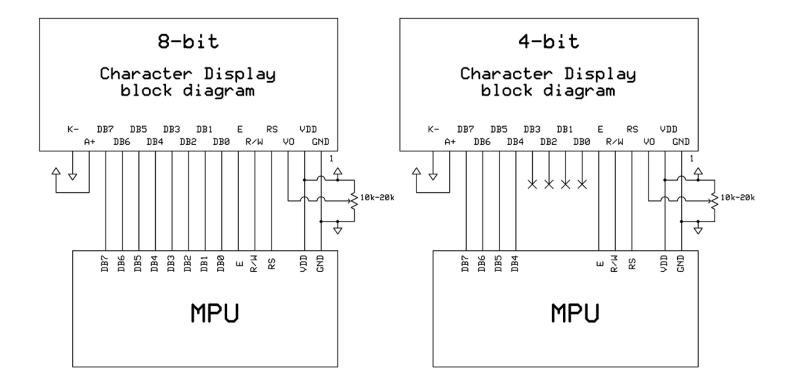

Document Revision History

Revision	Date	Description	Changed by
0	10/31/2011	33V – improved liquid; VDD = 3.3V	SB
1	8/8/2012	Mechanical Drawing Updated	ŢΊ
2	5/9/2014	Electrical/Optical characteristics, Mechanical drawing updated	ML
3	4/25/16	Mechanical Drawing Updated	SB
4	5/26/16	Backlight Current Updated	SB
5	8/10/16	Backlight Voltage & Supply Current Updated	SB

Functions and Features

- 2 lines x 8 characters
- Built-in controller (ST7066U or equivalent)
- +3.3V power supply
- 1/16 duty, 1/5 bias
- RoHS compliant

Mechanical Drawing


The drawing contained herein is the exclusive property of Newhaven Display International, Inc. and shall not be copied, reproduced, and/or disclosed in any format without permission.

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	V_{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for logic (+3.3V)
3	V_0	Adj Power Supply	Power supply for contrast (approx. 0V)
4	RS	MPU	Register Select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
6	E	MPU	Operation Enable signal. Falling edge triggered.
7-10	DB0 – DB3	MPU	Four low order bi-directional three-state data bus lines.
			These four are not used during 4-bit operation.
11-14	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED+	Power Supply	Backlight Anode (+3.0V)
16	LED-	Power Supply	Backlight Cathode (Ground)

Recommended LCD connector: 2x8 2.54mm pitch connector

Backlight connector: --- Mates with: ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-20	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	-	+80	°C
Supply Voltage	V_{DD}	-	3.1	3.3	3.5	V
Supply Current	I _{DD}	$V_{DD} = 3.3V$	1.0	1.5	2.5	mA
Supply for LCD (contrast)	V_{LCD}	$T_{OP} = 25^{\circ}C$	3.1	3.3	3.5	V
"H" Level input	V _{IH}	-	0.7*VDD	-	VDD	V
"L" Level input	V_{IL}	-	-0.3	-	0.6	V
"H" Level output	V _{OH}	-	0.75*VDD	-	VDD	V
"L" Level output	V _{OL}	-	GND	-	0.2*VDD	V
Backlight Supply Voltage	V_{LED}	-	2.8	3.0	3.2	V
Backlight Supply Current	I _{LED}	$V_{LED} = 3.0V$	5	10	15	mA

Optical Characteristics

	lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Omtimos	Тор		φΥ+		-	40	-	0
Optimal Viewing	Bot	tom	φΥ-	CR ≥ 2	-	60	-	0
	Left		θХ-	CR ≥ 2	-	60	-	0
Angles	Righ	nt	θХ+		-	60	-	0
Contrast Rat	io		CR	-	2	5	-	-
Dosponso T	ina	Rise	T_R	T - 25°C	-	150	250	ms
Response Tir	ime	Fall	T _F	T _{OP} = 25°C	-	200	300	ms

Controller Information

Built-in ST7066U controller.

Please download specification at http://www.newhavendisplay.com/app notes/ST7066U.pdf

DDRAM Address

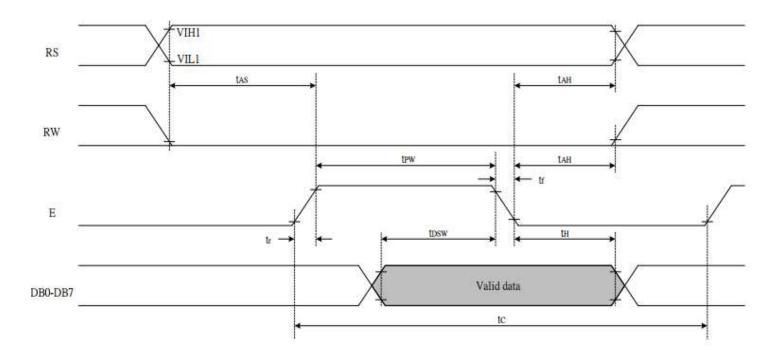
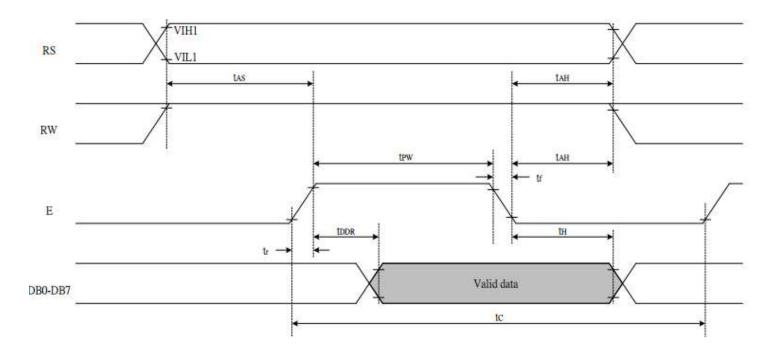

1	2	3	4	5	6	7	8
00	01	02	03	04	05	06	07
40	41	42	43	44	45	46	47

Table of Commands

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	ı	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	1	Set interface data length (DL: 8-Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	0us
Write data To Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us


Timing Characteristics

Writing data from MPU to ST7066U

	Write Mode (Writing data from MPU to ST7066U)									
T _C	Enable Cycle Time	Pin E	1200	ı	ı	ns				
T _{PW}	Enable Pulse Width	Pin E	140	ı	ı	ns				
T_R, T_F	Enable Rise/Fall Time	Pin E	-	•	25	ns				
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	•	ns				
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	•	ı	ns				
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	40	•	ı	ns				
T _H	Data Hold Time	Pins: DB0 - DB7	10	•	-	ns				

Reading data from ST7066U to MPU

	Read Mode (Reading Data from ST7066U to MPU)									
T _C	Enable Cycle Time	Pin E	1200	1	ı	ns				
T _{PW}	Enable Pulse Width	Pin E	140	1	ı	ns				
T_R, T_F	Enable Rise/Fall Time Pin E		1	1	25	ns				
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	1	ı	ns				
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	•	ı	ns				
T_DDR	Data Setup Time	Pins: DB0 - DB7	-	ı	100	ns				
T _H	Data Hold Time	Pins: DB0 - DB7	10	•	•	ns				

Built-in Font Table

67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)										•					
0110	(7)															
0111	(8)												×			
1000	(1)					×										
1001	(2)															
1010	(3)															
1011	(4)				×							W				
1100	(5)															
1101	(6)															
1110	(7)		•													
1111	(8)															

Example Initialization Program

```
8-bit Initialization:
/**********************
void command(char i)
      P1 = i;
                                   //put data on output Port
     D_I = 0;
                                   //D/I=LOW : send instruction
     R_W = 0;
                                   //R/W=LOW : Write
     E = 1;
                                   //enable pulse width >= 300ns
     Delay(1);
      E = 0;
                                   //Clock enable: falling edge
void write(char i)
                                  //put data on output Port
     P1 = i;
     D_I = 1;
                                   //D/I=HIGH : send data
     R_W = 0;
                                  //R/W=LOW : Write
     E = 1;
     Delay(1);
                                  //enable pulse width >= 300ns
     E = 0;
                                   //Clock enable: falling edge
void init()
{
      E = 0;
      Delay(100);
                                //Wait >40 msec after power is applied
//command 0x30 = Wake up
//must wait 5ms, busy flag not available
//command 0x30 = Wake up #2
                                   //Wait >40 msec after power is applied
      command(0x30);
      Delay(30);
      command(0x30);
                                 //must wait 160us, busy flag not available
//command 0x30 = Wake up #3
//must wait 160us, busy flag not available
//Function set: 8-bit/2-line
//Set cursor
//Display ON; Cursor ON
      Delay(10);
      command(0x30);
      Delay(10);
      command (0x38);
      command(0x10);
      command (0x0c);
     command (0x06);
                                   //Entry mode set
```

```
4-bit Initialization:
void command(char i)
     P1 = i;
                               //put data on output Port
                               //D/I=LOW : send instruction
     D_{I} = 0;
                              //R/W=LOW : Write
     R_W = 0;
                              //Send lower 4 bits
     Nybble();
     i = i << 4;
                              //Shift over by 4 bits
     P1 = i;
                              //put data on output Port
     Nybble();
                               //Send upper 4 bits
void write(char i)
     P1 = i;
                               //put data on output Port
    D_I = 1;
                               //D/I=HIGH : send data
     R_W = 0;
                              //R/W=LOW : Write
     Nybble();
                              //Clock lower 4 bits
     i = i << 4;
                              //Shift over by 4 bits
     P1 = i;
                               //put data on output Port
     Nybble();
                               //Clock upper 4 bits
/**********************
void Nybble()
     E = 1;
     Delay(1);
                              //enable pulse width >= 300ns
     E = 0;
                               //Clock enable: falling edge
void init()
{
     P1 = 0;
     P3 = 0;
     Delay(100);
                               //Wait >40 msec after power is applied
     P1 = 0x30;
                               //put 0x30 on the output port
     Delay(30);
                               //must wait 5ms, busy flag not available
     Nybble();
                               //command 0x30 = Wake up
     Delay(10);
                               //must wait 160us, busy flag not available
                               //command 0x30 = Wake up #2
     Nybble();
                               //must wait 160us, busy flag not available
     Delay(10);
                               //command 0x30 = Wake up #3
     Nybble();
                              //can check busy flag now instead of delay
     Delay(10);
     P1 = 0x20;
                              //put 0x20 on the output port
                             //put 0x20 on the output port
//Function set: 4-bit interface
//Function set: 4-bit/2-line
     Nybble();
     command(0x28);
                              //Set cursor
     command(0x10);
                               //Display ON; Blinking cursor
     command (0x0F);
     command (0x06);
                               //Entry Mode set
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 48hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 48hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 48hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 48hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C, 90% RH, 48hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	0°C,30min -> 25°C,5min -> 50°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information

See Terms and Conditions at http://www.newhavendisplay.com/index.php?main_page=terms