

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NHD-0208BZ-FSW-GBW-33V3

Character Liquid Crystal Display Module

NHD- Newhaven Display 0208- 2 Lines x 8 Characters

BZ- Model

F- Transflective

SW- Side White LED Backlight

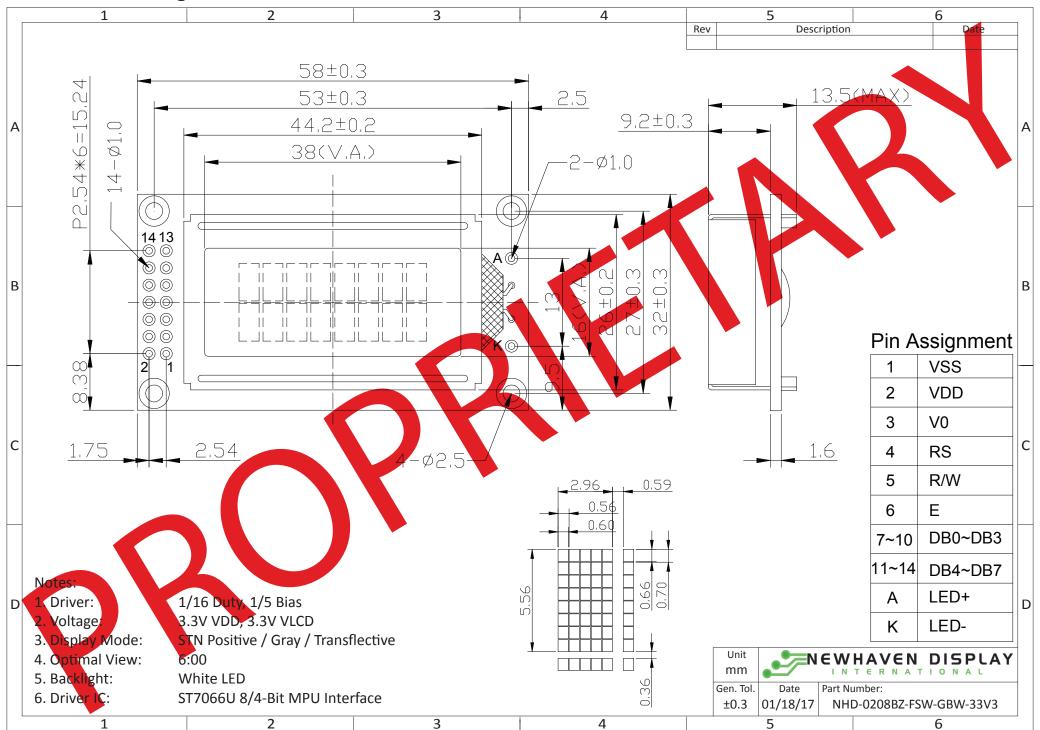
G- STN Positive, Gray
B- 6:00 Optimal View
W- Wide Temperature
33V3- 3.3 V_{DD}, 3 Volt Backlight

RoHS Compliant

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

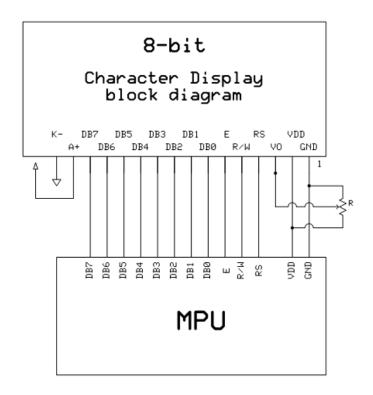
Ph: 847-844-8795 Fax: 847-844-8796

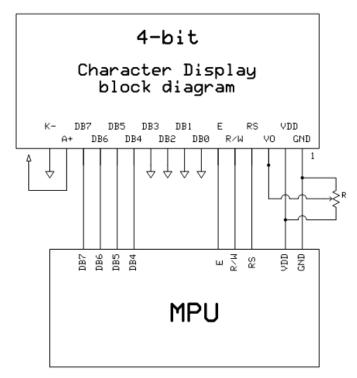

Document Revision History

Revision	Date	Description	Changed by
0	2/10/2012	3.3V Liquid Crystal Implemented	SB
1	1/18/17	Mechanical Drawing, Electrical & Optical Char. Updated	SB

Functions and Features

- 2 lines x 8 characters
- Built-in controller (ST7066U or equivalent)
- +3.3V Power Supply
- 1/16 duty, 1/5 bias
- RoHS compliant


Mechanical Drawing



Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	V_{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for logic (+3.3V)
3	V_0	Adj Power Supply	Supply Voltage for contrast (approx. 0.1V)
4	RS	MPU	Register Select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
6	Е	MPU	Operation enable signal. Falling edge triggered.
7-10	DB0 - DB3	MPU	Four low order bi-directional three-state data bus lines. These
			four are not used during 4-bit operation.
11-14	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.
Α	LED+	Power Supply	Power supply for LED Backlight (+2.9V)
K	LED-	Power Supply	Ground for Backlight

Recommended LCD connector: 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-20	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	-	+80	°C
Supply Voltage	V_{DD}	-	3.1	3.3	3.5	V
Supply Current	I _{DD}	$V_{DD} = 3.3V$	0.5	1.5	2.5	mA
Supply for LCD (contrast)	V_{LCD}	$T_{OP} = 25^{\circ}C$	3.1	3.3	3.5	V
"H" Level input	V _{IH}	-	0.7*V _{DD}	-	V_{DD}	V
"L" Level input	V_{IL}	-	V_{SS}	-	0.6	V
"H" Level output	V _{OH}	-	0.75*V _{DD}	-	V_{DD}	V
"L" Level output	V _{OL}	-	V_{SS}	-	0.2*V _{DD}	V
Backlight Supply Current	I _{LED}	-	10	20	25	mA
Backlight Supply Voltage	V_{LED}	$I_{LED} = 20 \text{mA}$	2.8	2.9	3.0	V

Optical Characteristics

	Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Omtimos	Тор		φΥ+		-	35	-	0
Optimal Viewing Angles	Bot	tom	φΥ-	CR ≥ 2	-	60	-	0
	Left		θХ-	CR ≥ 2	-	40	-	0
Angles	Righ	nt	θХ+		-	40	-	0
Contrast Rat	io		CR	-	2	5	-	-
Dosponso T	ima	Rise	T_R	T - 25°C	-	150	250	ms
Response Tim	ime	Fall	T _F	T _{OP} = 25°C	-	200	300	ms

Controller Information

Built-in ST7066U controller.

Please download specification at http://www.newhavendisplay.com/app notes/ST7066U.pdf

DDRAM Address

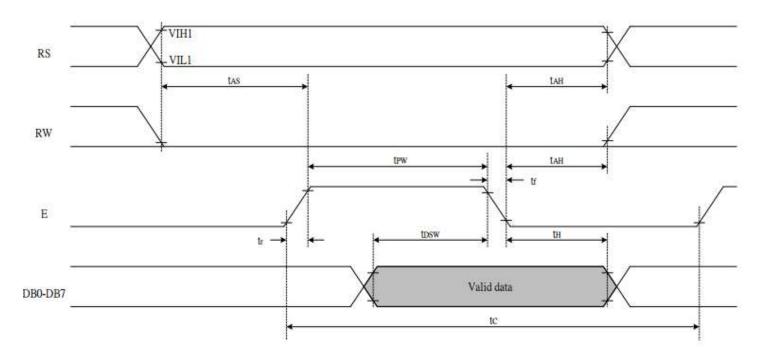
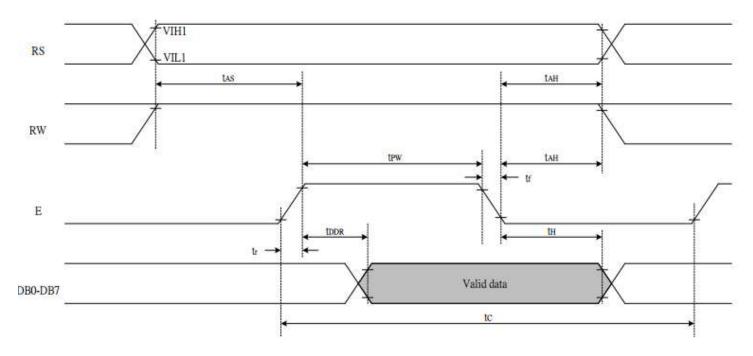

1	2	3	4	5	6	7	8
00	01	02	03	04	05	06	07
40	41	42	43	44	45	46	47

Table of Commands

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	1	Set DDRAM Address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Sets cursor move direction and specifies display shift. These parameters are performed during data write and read.	37μs
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	D=1: Entire display on C=1: Cursor on B=1: Blinking cursor on	37μs
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	1	Sets cursor moving and display shift control bit, and the direction without changing DDRAM data.	37μs
Function set	0	0	0	0	1	DL	N	F	-	ı	DL: Interface data is 8/4 bits N: Number of lines is 2/1 F: Font size is 5x11/5x8	37μs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37μs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	37μs
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0s
Write data To Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	37μs
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	37µs


Timing Characteristics

Writing data from MPU to ST7066U

	Write Mode (Writing data from MPU to ST7066U)								
Tc	Enable Cycle Time	Pin E	1200	-	-	ns			
T_{PW}	Enable Pulse Width	Pin E	460	-	-	ns			
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns			
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns			
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns			
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	80	-	-	ns			
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns			

Reading data from ST7066U to MPU

	Read Mode (Reading Data from ST7066U to MPU)									
T _C	Enable Cycle Time	Pin E	1200	-	-	ns				
T_PW	Enable Pulse Width	Pin E	480	-	-	ns				
T_R,T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns				
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	-	-	ns				
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	-	-	ns				
T _{DDR}	Data Setup Time	Pins: DB0 - DB7	-	-	320	ns				
T _H	Data Hold Time	Pins: DB0 - DB7	10	-	-	ns				

Built-in Font Table

67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

Example Initialization Program

```
8-bit Initialization:
/**********************
void command(char i)
      P1 = i;
                                    //put data on output Port
     D_I = 0;
                                    //D/I=LOW : send instruction
     R_W = 0;
                                    //R/W=LOW : Write
     E = 1;
     Delay(1);
                                    //enable pulse width >= 300ns
      E = 0;
                                     //Clock enable: falling edge
void write(char i)
     P1 = i;
                                    //put data on output Port
     D_I = 1;
                                    //D/I=HIGH : send data
                                    //R/W=LOW : Write
     R_W = 0;
     E = 1;
     Delay(1);
                                    //enable pulse width >= 300ns
     E = 0;
                                    //Clock enable: falling edge
/***********************
void init()
      E = 0;
      Delay(100);
                                    //Wait >40 msec after power is applied
                                    //command 0x30 = Wake up
      command(0x30);
                                 //must wait 5ms, busy flag not available
//command 0x30 = Wake up #2
//must wait 160us, busy flag not available
//command 0x30 = Wake up #3
//must wait 160us, busy flag not available
//Function set: 8-bit/2-line
//Set cursor
//Display ON: Cursor ON
                                    //must wait 5ms, busy flag not available
      Delay(30);
      command(0x30);
      Delay(10);
      command(0x30);
      Delay(10);
      command(0x38);
      command(0x10);
                                    //Display ON; Cursor ON
      command(0x0c);
      command (0x06);
                                    //Entry mode set
/***********************
```

```
4-bit Initialization:
void command(char i)
     P1 = i;
                               //put data on output Port
                               //D/I=LOW : send instruction
     D_{I} = 0;
                              //R/W=LOW : Write
     R_W = 0;
                              //Send lower 4 bits
     Nybble();
     i = i << 4;
                              //Shift over by 4 bits
     P1 = i;
                              //put data on output Port
     Nybble();
                               //Send upper 4 bits
void write(char i)
     P1 = i;
                               //put data on output Port
    D_I = 1;
                               //D/I=HIGH : send data
     R_W = 0;
                              //R/W=LOW : Write
     Nybble();
                              //Clock lower 4 bits
     i = i << 4;
                              //Shift over by 4 bits
     P1 = i;
                               //put data on output Port
     Nybble();
                               //Clock upper 4 bits
/**********************
void Nybble()
     E = 1;
     Delay(1);
                              //enable pulse width >= 300ns
     E = 0;
                               //Clock enable: falling edge
void init()
{
     P1 = 0;
     P3 = 0;
     Delay(100);
                               //Wait >40 msec after power is applied
     P1 = 0x30;
                               //put 0x30 on the output port
     Delay(30);
                               //must wait 5ms, busy flag not available
     Nybble();
                               //command 0x30 = Wake up
     Delay(10);
                               //must wait 160us, busy flag not available
                               //command 0x30 = Wake up #2
     Nybble();
                               //must wait 160us, busy flag not available
     Delay(10);
                               //command 0x30 = Wake up #3
     Nybble();
                              //can check busy flag now instead of delay
     Delay(10);
     P1 = 0x20;
                              //put 0x20 on the output port
                             //put 0x20 on the output port
//Function set: 4-bit interface
//Function set: 4-bit/2-line
     Nybble();
     command (0x28);
                              //Set cursor
     command(0x10);
                               //Display ON; Blinking cursor
     command (0x0F);
     command (0x06);
                               //Entry Mode set
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C , 48hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C, 90% RH, 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	V_S =800V, R_S =1.5k Ω , C_S =100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms