

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NHD-12232AZ-FSW-GBW

Graphic Liquid Crystal Display Module

NHD- Newhaven Display 12232- 122 x 32 pixels

AZ- Model

F- Transflective

SW- Side White LED Backlight

G- STN- Gray B- 6:00 view

W- Wide Temperature (-20°C ~+70°C)

RoHS Compliant

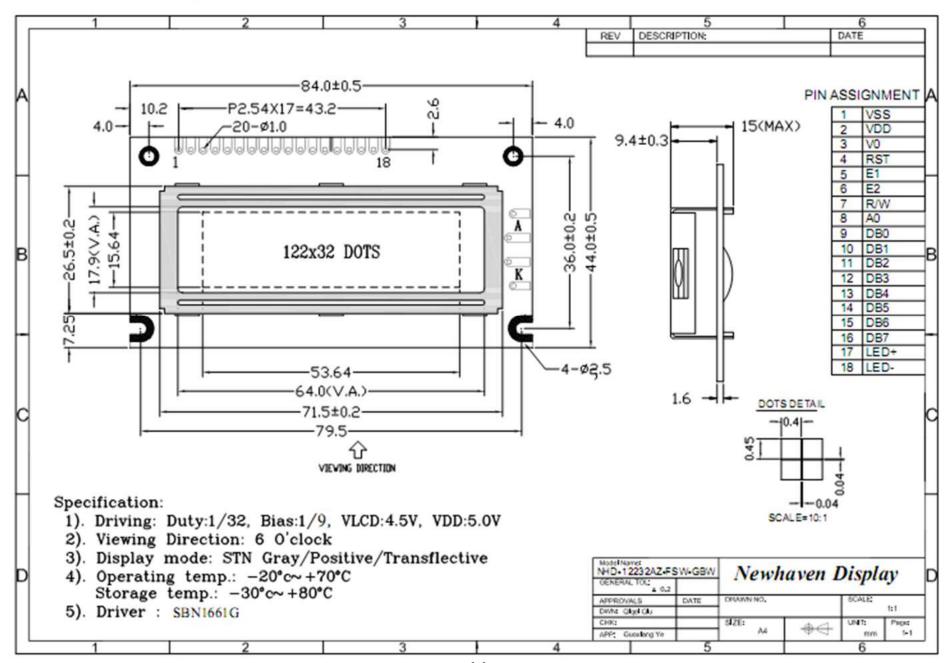
Newhaven Display International, Inc.

2511 Technology Drive, Suite 101

Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

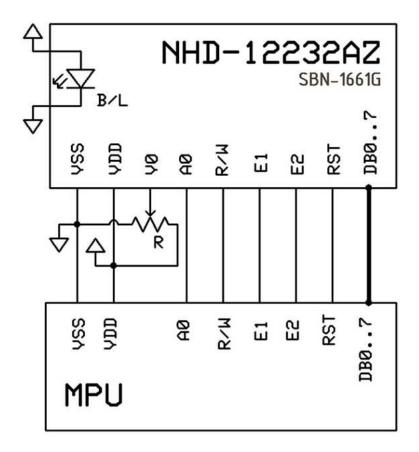

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	10/22/2008	Initial Release	-
1	3/16/2010	User guide reformat	BE
2	4/15/2010	Controller update	BE
3	8/5/2010	Electrical Characteristics Update	MP
4	6/2/2011	Mechanical drawing updated	AK
5	10/25/2011	Electrical characteristics updated	AK
6	1/27/2012	Pin description updated	AK
7	4/19/2012	Sample code updated	SB

Functions and Features

- 122 x 32 pixels
- Built-in SBN1661G_M02 Controller
- +5.0V power supply
- 1/32 duty cycle; 1/9 bias
- RoHS Compliant



Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Power supply for logic (+5.0V)
3	V0	Adj Power Supply	Power supply for contrast (approx. 0.5V)
4	RST	MPU	Active LOW Reset signal
5	E1	MPU	Operation enable signal. Falling edge triggered, SEG (1~60)
6	E2	MPU	Operation enable signal. Falling edge triggered, SEG (61~120)
7	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
8	A0	MPU	Register select signal. A0=0: Command, A0=1: Data
9-16	DB0-DB7	MPU	This is an 8-bit bi-directional data bus
17	LED+	Power Supply	Power supply for LED Backlight (+5.0V via on-board resistor)
18	LED-	Power Supply	Ground for Backlight

Recommended LCD connector: 2.54mm pitch pins

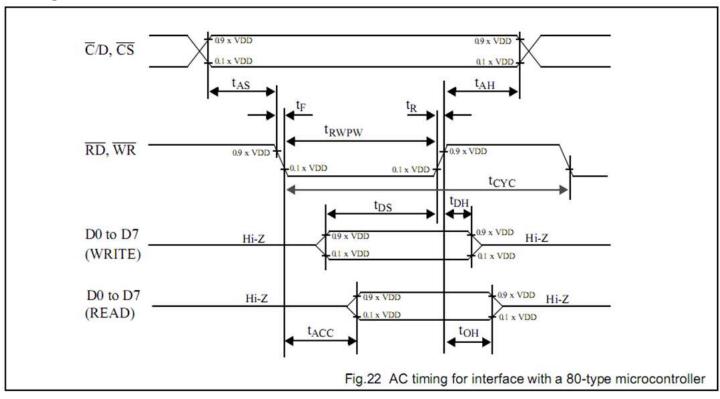
Backlight connector: - Mates with: -

Electrical Characteristics

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	-	+70	°C
Storage Temperature Range	Tst	Absolute Max	-30	ı	+80	°C
Supply Voltage	VDD		4.7	5.0	5.5	V
Supply Current	IDD	Ta=25°C, VDD=5.0V	-	2.0	3.0	mA
Supply for LCD (contrast)	VDD-V0	Ta=25°C	-	4.5	-	V
"H" Level input	VIH		0.7*VDD	1	VDD	V
"L" Level input	VIL	-	0	1	1.1	V
"H" Level output	VOH	-	VDD-0.3	1	VDD	V
"L" Level output	VOL	-	0	1	0.3	V
Backlight Supply Voltage	VLED		-	5.0	-	V
Backlight Supply Current	ILED	VLED=5.0V	-	18	-	mA

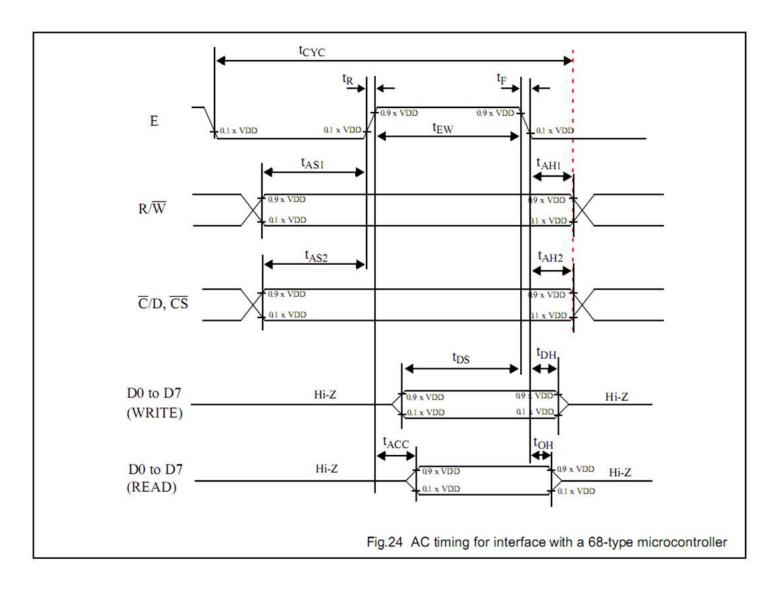
Optical Characteristics

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle - Vertical (top)	AV	Cr ≥ 3	-	10	-	
Viewing Angle – Vertical (bottom)	AV	Cr ≥ 3	-	60	-	0
Viewing Angle – Horizontal (left)	AH	Cr ≥ 3	-	45	-	
Viewing Angle - Horizontal (right)	AH	Cr ≥ 3	-	45	-	0
Contrast Ratio	Cr		-	5	-	-
Response Time (rise)	Tr	-	-	100	150	ms
Response Time (fall)	Tf	-	-	150	200	ms


Controller Information

Built-in SBN1661G_M02. Download specification at http://www.newhavendisplay.com/app notes/SBN1661G.pdf

Table of Commands


001111111		COMMAND CODE									
COMMAND	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION		
Write Display Data Data to be written into the Display Data Memory.				Write a byte of data to the Display Data Memory.							
Read Display Data	ay Data Pata read from the Display Data Memory.		Read a byte of data from the Display Data Memory.								
Read-Modify-Write	1	1	1	0	0	0	0	0	Start Read-Modify-Write operation.		
END	1	1	1	0	1	1	1	0	Stop Read-Modify-Write operation.		
Software Reset	1	1	1	0	0	0	1	0	Software Reset.		

Timing Characteristics

 V_{DD} = 5 V ±10%; V_{SS} = 0 V; T_{amb} = -20 °C to +75°C.

symbol	parameter	min.	max.	test conditons	unit
tas	Address set-up time	20			ns
t _{AH}	Address hold time	10		ĺ.	ns
t _F , t _R	Read/Write pulse falling/rising time		15		ns
t _{RWPW}	Read/Write pulse width	200			ns
tcyc	System cycle time	1000			ns
tos	Data setup time	80			ns
t _{DH}	Data hold time	10			ns
t _{ACC}	Data READ access time		90	CL= 100 pF.	ns
t _{OH}	Data READ output hold time	10	60	Refer to Fig. 23.	ns

 V_{DD} = 5 V ±10%; V_{SS} = 0 V; T_{amb} = -20 °C to +75°C.

symbol	parameter	min.	max.	test conditions	unit
t _{AS1}	Address set-up time with respect to R/W	20			ns
t _{AS2}	Address set-up time with respect to C/D, CS	20			ns
t _{AH1}	Address hold time with respect to R/W	10			ns
t _{AH2}	Address hold time respect with to C/D, CS	10			ns
t _F , t _R	Enable (E) pulse falling/rising time		15		ns
tcyc	System cycle time	1000		Note 1	ns
t _{EWR}	Enable pulse width for READ	100			ns
t _{EWW}	Enable pulse width for WRITE	80			ns
t _{DS}	Data setup time	80			ns
t _{DH}	Data hold time	10			ns
tacc	Data access time		90	CL= 100 pF.	ns
toH	Data output hold time	10	60	Refer to Fig. 23.	ns

Example Initialization Program:

```
void Comleft(char i)
P1 = i;
R_W = 0;
D_I = 0;
E1 = 1;
delay(2);
E1 = 0;
void Comright(char i)
P1 = i;
R_W = 0;
D_I = 0;
E2 = 1;
delay(2);
E2 = 0;
void Writeleft(char i)
P1 = i;
R_W = 0;
D_I = 1;
E1 = 1;
delay(2);
E1 = 0;
void Writeright(chari)
P1 = i;
R_W = 0;
D_I = 1;
E2 = 1;
delay(2);
E2= 0;
/********************************/
void bothSides(chari)
Comleft(i);
Comright(i);
/**********************************/
void init()
P1 = 0;
P3 = 0;
RST = 0;
                   //Reset RST
delay(1);
RST = 1;
                   //Reset RST= M68 Interface
delay(10);
D_I = 0;
R_W = 1;
bothSides(0xE2);
                   //0xE2 – Software reset
delay(10);
                  //0xA4 – Static Driver off
bothSides(0xA4);
bothSides(0xA9);
                   //0xA9 - select 1/32 duty
                  //0xA0 – Memory/Segment mapping normal
bothSides(0xA0);
bothSides(0xEE);
                  //0xEE - End
bothSides(0xC0);
                  //0xC0 - start at line address 0x00
bothSides(0xAF);
                   //0xAF - display on
,
/***********************************/
```

Quality Information

Test Item	Content of Test	Test Condition	Note	
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 200hrs	2	
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 200hrs	1,2	
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 200hrs	2	
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 200hrs	1,2	
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+60°C, 90% RH, 96hrs	1,2	
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	-20°C,30min -> 25°C,5min -> 70°C,30min = 1 cycle 10 cycles		
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3	
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time		

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms