# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





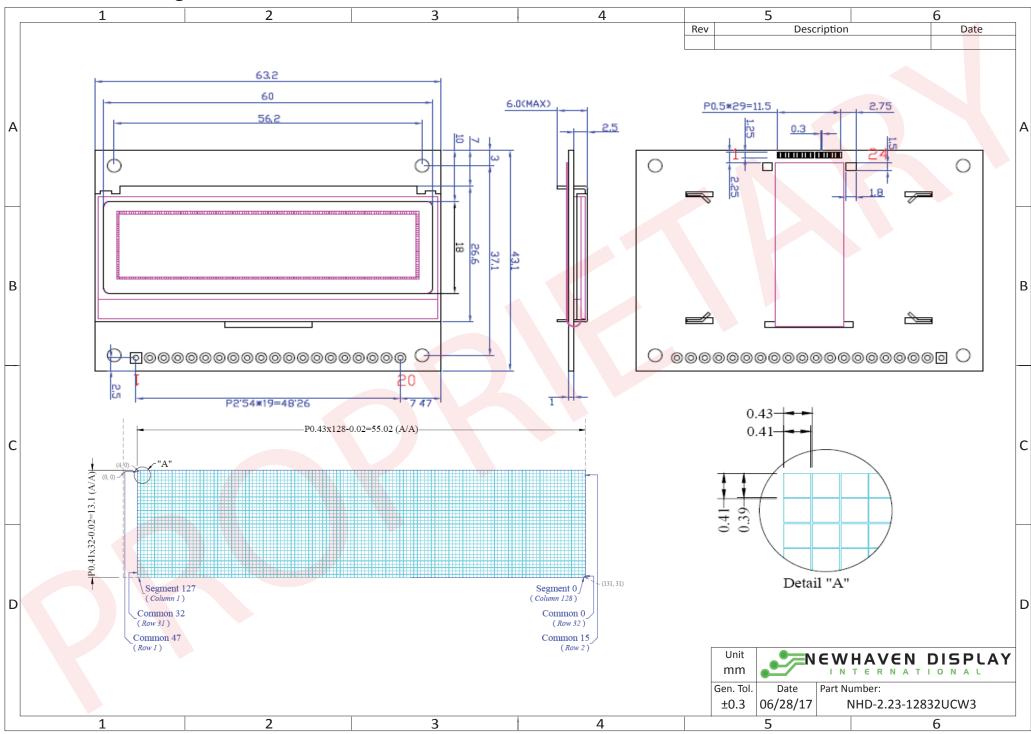


# NHD-2.23-12832UCW3

## **Graphic OLED Display Module**

NHD-Newhaven Display2.23-2.23" Diagonal Size12832-128 x 32 Pixel ResolutionUC-ModelW-Emitting Color: White3-+3V Power Supply

Newhaven Display International, Inc. 2661 Galvin Ct. Elgin IL, 60124 Ph: 847-844-8795 Fax: 847-844-8796


#### **Document Revision History**

| Revision | Date    | Description             | Changed by |
|----------|---------|-------------------------|------------|
| 0        | 7/27/15 | Initial Product Release | SB         |
| 1        | 6/28/17 | Datasheet Reformat      | SB         |

#### **Functions and Features**

- 128 x 32 pixel resolution
- Built-in SSD1305 controller
- Parallel or serial MPU interface
- Single, low voltage power supply
- RoHS compliant

#### **Mechanical Drawing**



The information contained herein is the exclusive property of Newhaven Display International, Inc. and shall not be copied, reproduced, and/or disclosed in any format without permission.

## Interface Description

#### **Parallel Interface:**

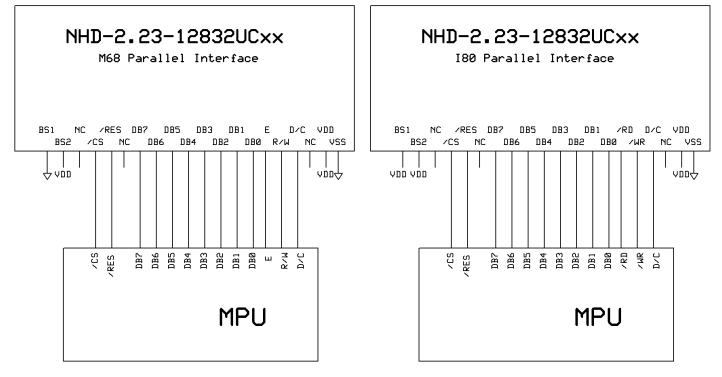
| Pin No. | Symbol          | <b>External Connection</b> | Function Description                                 |
|---------|-----------------|----------------------------|------------------------------------------------------|
| 1       | V <sub>ss</sub> | Power Supply               | Ground                                               |
| 2       | V <sub>DD</sub> | Power Supply               | Supply Voltage for OLED and logic.                   |
| 3       | NC              | -                          | No Connect                                           |
| 4       | D/C             | MPU                        | Register select signal. D/C=0: Command, D/C=1: Data  |
| 5       | R/W or /WR      | MPU                        | 6800-interface:                                      |
|         |                 |                            | Read/Write select signal, R/W=1: Read R/W: =0: Write |
|         |                 |                            | 8080-interface:                                      |
|         |                 |                            | Active LOW Write signal.                             |
| 6       | E or /RD        | MPU                        | 6800-interface:                                      |
|         |                 |                            | Operation enable signal. Falling edge triggered.     |
|         |                 |                            | 8080-interface:                                      |
|         |                 |                            | Active LOW Read signal.                              |
| 7-14    | DB0 – DB7       | MPU                        | 8-bit Bi-directional data bus lines.                 |
| 15      | NC              | -                          | No Connect                                           |
| 16      | /RES            | MPU                        | Active LOW Reset signal.                             |
| 17      | /CS             | MPU                        | Active LOW Chip Select signal.                       |
| 18      | NC              | -                          | No Connect                                           |
| 19      | BS2             | MPU                        | MPU Interface Select signal.                         |
| 20      | BS1             | MPU                        | MPU Interface Select signal.                         |

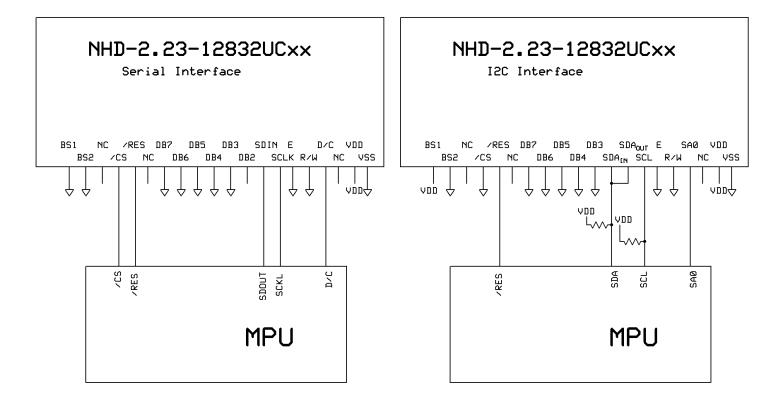
#### Serial Interface:

| Pin No. | Symbol          | <b>External Connection</b> | Function Description                                |
|---------|-----------------|----------------------------|-----------------------------------------------------|
| 1       | V <sub>ss</sub> | Power Supply               | Ground                                              |
| 2       | $V_{DD}$        | Power Supply               | Supply Voltage for OLED and logic.                  |
| 3       | NC              | -                          | No Connect                                          |
| 4       | D/C             | MPU                        | Register select signal. D/C=0: Command, D/C=1: Data |
| 5-6     | V <sub>ss</sub> | Power Supply               | Ground                                              |
| 7       | SCLK            | MPU                        | Serial Clock signal.                                |
| 8       | SDIN            | MPU                        | Serial Data Input signal.                           |
| 9       | NC              | -                          | No Connect                                          |
| 10-14   | VSS             | Power Supply               | Ground                                              |
| 15      | NC              | -                          | No Connect                                          |
| 16      | /RES            | MPU                        | Active LOW Reset signal.                            |
| 17      | /CS             | MPU                        | Active LOW Chip Select signal.                      |
| 18      | NC              | -                          | No Connect                                          |
| 19      | BS2             | MPU                        | MPU Interface Select signal.                        |
| 20      | BS1             | MPU                        | MPU Interface Select signal.                        |

#### I2C Interface:

| Pin No. | Symbol             | <b>External Connection</b> | Function Description                                          |
|---------|--------------------|----------------------------|---------------------------------------------------------------|
| 1       | V <sub>ss</sub>    | Power Supply               | Ground                                                        |
| 2       | V <sub>DD</sub>    | Power Supply               | Supply Voltage for OLED and logic.                            |
| 3       | NC                 | -                          | No Connect                                                    |
| 4       | SA0                | MPU                        | Slave Address Selection signal.                               |
| 5-6     | V <sub>ss</sub>    | Power Supply               | Ground                                                        |
| 7       | SCL                | MPU                        | Serial Clock signal.                                          |
| 8       | SDA <sub>IN</sub>  | MPU                        | Serial Data input signal (pins 8 and 9 can be tied together). |
| 9       | SDA <sub>OUT</sub> | MPU                        | Serial Data output signal (pin9 can be no connect).           |
| 10-14   | VSS                | Power Supply               | Ground                                                        |
| 15      | NC                 | -                          | No Connect                                                    |
| 16      | /RES               | MPU                        | Active LOW Reset signal.                                      |
| 17      | V <sub>ss</sub>    | Power Supply               | Ground                                                        |
| 18      | NC                 | -                          | No Connect                                                    |
| 19      | BS2                | MPU                        | MPU Interface Select signal.                                  |
| 20      | BS1                | MPU                        | MPU Interface Select signal.                                  |


#### **MPU Interface Pin Selections**


| Pin<br>Name | 6800 Parallel<br>8-bit interface | 8080 Parallel<br>8-bit interface | Serial<br>Interface | I2C<br>Interface |
|-------------|----------------------------------|----------------------------------|---------------------|------------------|
| BS2         | 1                                | 1                                | 0                   | 0                |
| BS1         | 0                                | 1                                | 0                   | 1                |

#### **MPU Interface Pin Assignment Summery**

| Bus        |    |                                                                   | D      | ata/C | òmm | and Interfa |      | Control Signals |     |      |     |     |      |  |
|------------|----|-------------------------------------------------------------------|--------|-------|-----|-------------|------|-----------------|-----|------|-----|-----|------|--|
| Interface  | D7 | D6                                                                | D5     | D4    | D3  | Ε           | R/W  | /CS             | D/C | /RES |     |     |      |  |
| 8-bit 6800 |    |                                                                   |        |       | D[] | 7:0]        |      |                 | Е   | R/W  | /CS | D/C | /RES |  |
| 8-bit 8080 |    |                                                                   |        |       | D[] | 7:0]        |      |                 | /RD | /WR  | /CS | D/C | /RES |  |
| SPI        |    | T                                                                 | ie LO\ | N     |     | NC          | SDIN | SCLK            | Tie | LOW  | /CS | D/C | /RES |  |
| I2C        |    | Tie LOW SDA <sub>IN</sub> SDA <sub>OUT</sub> SCL Tie LOW SAO /RES |        |       |     |             |      |                 |     |      |     |     |      |  |

#### **Wiring Diagrams**





### **Electrical Characteristics**

| Item                        | Symbol                                | Condition                                    | Min.                  | Тур. | Max.                  | Unit |
|-----------------------------|---------------------------------------|----------------------------------------------|-----------------------|------|-----------------------|------|
| Operating Temperature Range | T <sub>OP</sub>                       | Absolute Max                                 | -40                   | -    | +85                   | °C   |
| Storage Temperature Range   | T <sub>ST</sub>                       | Absolute Max                                 | -40                   | -    | +90                   | °C   |
|                             |                                       |                                              |                       |      |                       |      |
| Supply Voltage              | V <sub>DD</sub>                       |                                              | -                     | 3.3  | 3.5                   | V    |
| Supply Current (logic)      | I <sub>DD</sub>                       | T <sub>OP</sub> =25°C, V <sub>DD</sub> =3.3V | -                     | 180  | 300                   | μΑ   |
| Supply Current (display)    |                                       | 50% ON, V <sub>DD</sub> =3.3V                | -                     | 62   | 70                    | mA   |
| Supply Current (display)    | I <sub>CC</sub>                       | 100% ON, V <sub>DD</sub> =3.3V               | -                     | 113  | 120                   | mA   |
| Sleep Mode Current          | I <sub>DD</sub> +I <sub>CCSLEEP</sub> | -                                            | -                     | 3    | 15                    | μΑ   |
| "H" Level input             | V <sub>IH</sub>                       | -                                            | 0.8 * V <sub>DD</sub> | -    | V <sub>DD</sub>       | V    |
| "L" Level input             | VIL                                   | -                                            | V <sub>SS</sub>       | -    | 0.2 * V <sub>DD</sub> | V    |
| "H" Level output            | V <sub>OH</sub>                       | -                                            | 0.9 * V <sub>DD</sub> | -    | V <sub>DD</sub>       | V    |
| "L" Level output            | V <sub>OL</sub>                       | -                                            | V <sub>SS</sub>       | -    | $0.1 * V_{DD}$        | V    |

## **Optical Characteristics**

|              | lte  | em   | Symbol         | Condition                  | Min.     | Тур. | Max. | Unit              |
|--------------|------|------|----------------|----------------------------|----------|------|------|-------------------|
| Outimal      | Тор  |      | φY+            |                            | 80       | -    | -    | 0                 |
| Optimal      | Bott | tom  | φY-            | CD>10.000                  | 80       | -    | -    | 0                 |
| Viewing      | Left |      | θΧ-            | CR≥10,000                  | 80       | -    | -    | 0                 |
| Angles       | Righ | nt   | θX+            |                            | 80       | -    | -    | 0                 |
| Contrast Rat | io   |      | Cr             | -                          | 10,000:1 | -    | -    | -                 |
| Deenenee     |      | Rise | T <sub>R</sub> | -                          | -        | 10   | -    | μs                |
| Response T   | ime  | Fall | T <sub>F</sub> | -                          | -        | 10   | -    | μs                |
| Brightness   |      |      | L <sub>v</sub> | 50% Checkerboard           | 100      | 120  | -    | cd/m <sup>2</sup> |
| Lifetime     |      |      | -              | $L_V = 120 \text{ cd/m}^2$ | 10,000   | -    | -    | Hrs.              |
|              |      |      |                | 50% Checkerboard           |          |      |      |                   |

**Note**: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. The Display OFF command can be used to extend the lifetime of the display.

Luminance of active pixels will degrade faster than inactive pixels. Residual (burn-in) images may occur. To avoid this, every pixel should be illuminated uniformly.

# Built-in SSD1305 controller.

## Instruction Table

| Instruction       |     |        |        |        | Cod    | le     |        |     |     |     | Description                                                                                                                                | RESET        |
|-------------------|-----|--------|--------|--------|--------|--------|--------|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Instruction       | D/C | HEX    | DB7    | DB6    | DB5    | DB4    | DB3    | DB2 | DB1 | DB0 | Description                                                                                                                                | value        |
| Set Lower Column  | 0   | 00~ 0F | 0      | 0      | 0      | 0      | X3     | X2  | X1  | X0  | Set the lower nibble of the column start address register for Page                                                                         | 0            |
| Start Address     |     |        |        |        |        |        |        |     |     |     | Addressing Mode.                                                                                                                           |              |
| Set Higher        | 0   | 10~1F  | 0      | 0      | 0      | 1      | X3     | X2  | X1  | X0  | Set the higher nibble of the column start address register for Page                                                                        | 0            |
| Column Start      |     |        |        |        |        |        |        |     |     |     | Addressing Mode.                                                                                                                           |              |
| Address           |     |        |        |        |        |        |        |     |     |     |                                                                                                                                            |              |
| Set Memory        | 0   | 20     | 0      | 0      | 1      | 0      | 0      | 0   | 0   | 0   | A[1:0] = 00b, Horizontal Addressing Mode                                                                                                   |              |
| Addressing Mode   |     | A[1:0] | *      | *      | *      | *      | *      | *   | A1  | A0  | A[1:0] = 01b, Vertical Addressing Mode                                                                                                     | 10b          |
|                   |     |        |        |        |        |        |        |     |     |     | A[1:0] = 10b, Page Addressing Mode                                                                                                         |              |
|                   |     | •      |        |        |        |        |        |     |     |     | A[1:0] = 11b, Invalid                                                                                                                      |              |
| Set Column        | 0   | 21     | 0      | 0      | 1      | 0      | 0      | 0   | 0   | 1   | Setup column start and end address<br>A[7:0]: Column start address. Range: 0-131d                                                          | 0            |
| Address           |     | A[7:0] | A7     | A6     | A5     | A4     | A3     | A2  | A1  | A0  | B[7:0]: Column end address. Range: 0-131d                                                                                                  | 131d         |
|                   |     | B[7:0] | B7     | B6     | B5     | B4     | B3     | B2  | B1  | BO  |                                                                                                                                            | 1510         |
| Set Page Address  | 0   | 22     | 0<br>* | 0<br>* | 1<br>* | 0<br>* | 0<br>* | 0   | 1   | 0   | Setup page start and end address<br>A[2:0]: Page start address. Range: 0-7d                                                                | 0            |
|                   |     | A[2:0] | *      | *      | *      | *      | *      | A2  | A1  | A0  | B[2:0]: Page end address. Range: 0-7d                                                                                                      | 7d           |
|                   |     | B[2:0] |        |        | -      |        |        | B2  | B1  | B0  |                                                                                                                                            |              |
| Set Display Start | 0   | 40~7F  | 0      | 1      | X5     | X4     | X3     | X2  | X1  | X0  | Set display RAM display start line register from 0-63d.                                                                                    | 0            |
| Line              |     |        |        |        |        |        |        |     |     |     |                                                                                                                                            |              |
| Set Contrast      | 0   | 81     | 1      | 0      | 0      | 0      | 0      | 0   | 0   | 1   | Double byte command to select 1 out of 256 contrast steps. Contrast                                                                        |              |
| Control           |     | A[7:0] | A7     | A6     | A5     | A4     | A3     | A2  | A1  | A0  | increases as the value increases.                                                                                                          | 0x80         |
| Set Brightness    | 0   | 82     | 1      | 0      | 0      | 0      | 0      | 0   | 1   | 0   | Double byte command to select 1 out of 256 brightness steps.                                                                               |              |
|                   |     | A[7:0] | A7     | A6     | A5     | A4     | A3     | A2  | A1  | A0  | Brightness increases as the value increases.                                                                                               | 0x80         |
| Set Look-Up Table | 0   | 91     | 1      | 0      | 0      | 1      | 0      | 0   | 0   | 1   | Set current drive pulse width of Bank 0, Color A, B and C.                                                                                 |              |
|                   |     | X[5:0] | *      | *      | X5     | X4     | Х3     | X2  | X1  | XO  | Bank 0: X[5:0] = 31 to 63. Pulse width set to 32 to 64 clocks.                                                                             | 0x31         |
|                   |     | A[5:0] | *      | *      | A5     | A4     | A3     | A2  | A1  | A0  | Color A: X[5:0] = 31 to 63. Pulse width set to 32 to 64 clocks.<br>Color B: X[5:0] = 31 to 63. Pulse width set to 32 to 64 clocks.         | 0x3F<br>0x3F |
|                   |     | B[5:0] | *      | *      | B5     | B4     | B3     | B2  | B1  | B0  | Color C: $X[5:0] = 31$ to 63. Pulse width set to 32 to 64 clocks.                                                                          | 0x3F<br>0x3F |
|                   |     | C[5:0] | *      | *      | C5     | C4     | C3     | C2  | C1  | C0  | Note: Color D pulse width is fixed at 64 clocks.                                                                                           | 0,51         |
| Set Bank Color of | 0   | 92     | 1      | 0      | 0      | 1      | 0      | 0   | 1   | 0   | Sets the bank color of Bank1~Bank16 to any one of the 4 colors A,B,C,                                                                      |              |
| Bank1 to Bank16   |     | A[7:0] | A7     | A6     | A5     | A4     | A3     | A2  | A1  | A0  | and D.                                                                                                                                     |              |
| (Page 0)          |     | B[7:0] | B7     | B6     | B5     | B4     | B3     | B2  | B1  | BO  | A[1:0] : 00b, 01b, 10b, or 11b for Color = A, B, C, or D of BANK1.                                                                         |              |
| ( -0)             |     | C[7:0] | C7     | C6     | C5     | C4     | C3     | C2  | C1  | CO  | A[3:2] : 00b, 01b, 10b, or 11b for Color = A, B, C, or D of BANK2.                                                                         |              |
|                   |     | D[7:0] | D7     | D6     | D5     | D4     | D3     | D2  | D1  | DO  |                                                                                                                                            |              |
|                   |     |        |        | -      | -      | -      | -      | _   |     |     |                                                                                                                                            |              |
|                   |     |        |        |        |        |        |        |     |     |     | $\cdot$                                                                                                                                    |              |
|                   |     |        |        |        |        |        |        |     |     |     | D[5:4] : 00b, 01b, 10b, or 11b for Color = A, B, C, or D of BANK15.<br>D[7:6] : 00b, 01b, 10b, or 11b for Color = A, B, C, or D of BANK16. |              |
| Set Bank Color of | 0   | 93     | 1      | 0      | 0      | 1      | 0      | 0   | 1   | 1   | Sets the bank color of Bank17~Bank32 to any one of the 4 colors                                                                            |              |
|                   | U   |        | -      | U      | J      | 1      | 0      | 5   |     | · · | Deta the bank block of banker banksz to any one of the + colors                                                                            |              |

| Bank17 to Bank32<br>(Page 1)                                   |   | A[7:0]<br>B[7:0]<br>C[7:0]<br>D[7:0] | A7<br>B7<br>C7<br>D7 | A6<br>B6<br>C6<br>D6 | A5<br>B5<br>C5<br>D5 | A4<br>B4<br>C4<br>D4 | A3<br>B3<br>C3<br>D3 | A2<br>B2<br>C2<br>D2 | A1<br>B1<br>C1<br>D1 | A0<br>B0<br>C0<br>D0 | A,B,C, and D.<br>A[1:0] : 00b, 01b, 10b, or 11b for Color = A, B, C, or D of BANK17.<br>A[3:2] : 00b, 01b, 10b, or 11b for Color = A, B, C, or D of BANK18.                                       |                |
|----------------------------------------------------------------|---|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                                |   | D[7:0]                               | 07                   | Do                   | 25                   | D4                   | 03                   | DZ                   | DI                   | DU                   | D[5:4] : 00b, 01b, 10b, or 11b for Color = A, B, C, or D of BANK31.<br>D[7:6] : 00b, 01b, 10b, or 11b for Color = A, B, C, or D of BANK32.                                                        |                |
| Set Segment<br>Remap                                           | 0 | A0/A1                                | 1                    | 0                    | 1                    | 0                    | 0                    | 0                    | 0                    | X0                   | X[0] = 0; Column address 0 is mapped to SEG0<br>X[0] = 1; Column address 131 is mapped to SEG0                                                                                                    | 0              |
| Entire Display ON                                              | 0 | A4/A5                                | 1                    | 0                    | 1                    | 0                    | 0                    | 1                    | 0                    | X0                   | X[0] = 0; Resume RAM content display. Output follows RAM content.<br>X[0] = 1; Entire display ON. Output ignores RAM content.                                                                     | 0              |
| Set Normal/<br>Inverse Display                                 | 0 | A6/A7                                | 1                    | 0                    | 1                    | 0                    | 0                    | 1                    | 1                    | X0                   | X[0] = 0; Normal display.<br>X[0] = 1; Inverse display.                                                                                                                                           | 0              |
| Set Multiplex<br>Ratio                                         | 0 | A8<br>A[5:0]                         | 1<br>*               | 0<br>*               | 1<br>A5              | 0<br>A4              | 1<br>A3              | 0<br>A2              | 0<br>A1              | 0<br>A0              | Set MUX ratio to N+1 MUX<br>N=A[5:0]; from 16MUX to 64MUX (0 to 14 are invalid)                                                                                                                   | 64             |
| Dim mode setting                                               | 0 | AB<br>A[3:0]<br>B[7:0]<br>C[7:0]     | 1<br>*<br>B7<br>C7   | 0<br>*<br>B6<br>C6   | 1<br>*<br>B5<br>C5   | 0<br>*<br>B4<br>C4   | 1<br>A3<br>B3<br>C3  | 0<br>A2<br>B2<br>C2  | 1<br>A1<br>B1<br>C1  | 1<br>A0<br>B0<br>C0  | A[3:0] = reserved. Set as 0000b<br>B[7:0] = Set contrast for BANKO. Range 0-255d. Refer to command<br>81h.<br>C[7:0] = Set brightness for color bank. Range 0-255d. Refer to<br>command 82h.      |                |
| Master<br>configuration                                        | 0 | AD<br>AE                             | 1<br>1               | 0<br>0               | 1<br>0               | 0<br>0               | 1<br>1               | 1<br>1               | 0<br>1               | 1<br>0               | Selects external VCC supply                                                                                                                                                                       | AEh            |
| Set Display ON/<br>OFF                                         | 0 | AC/<br>AE/<br>AF                     | 1                    | 0                    | 1                    | 0                    | 1                    | 1                    | A1                   | A0                   | ACh = Display ON in dim mode<br>AEh = Display OFF (sleep mode)<br>AFh = Display ON in normal mode                                                                                                 | AEh            |
| Set Page Start<br>Address                                      | 0 | B0~B7                                | 1                    | 0                    | 1                    | 1                    | 0                    | X2                   | X1                   | X0                   | Set GDRAM Page Start Address for Page Addressing Mode using X[2:0].<br>PAGE0~PAGE7                                                                                                                |                |
| Set COM Output<br>Scan Direction                               | 0 | C0/C8                                | 1                    | 1                    | 0                    | 0                    | Х3                   | 0                    | 0                    | 0                    | X[3] = 0; Normal mode. Scan from COM0 to COM[N-1]<br>X[3] = 1; Remapped mode. Scan from COM[N-1] to COM0                                                                                          | 0              |
| Set Display Offset                                             | 0 | D3<br>A[5:0]                         | 1<br>*               | 1<br>*               | 0<br>A5              | 1<br>A4              | 0<br>A3              | 0<br>A2              | 1<br>A1              | 1<br>A0              | Set vertical shift by COM from 0~63.                                                                                                                                                              | 0              |
| Set Display Clock<br>Divide Ratio /<br>Oscillator<br>Frequency | 0 | D5<br>A[7:0]                         | 1<br>A7              | 1<br>A6              | 0<br>A5              | 1<br>A4              | 0<br>A3              | 1<br>A2              | 0<br>A1              | 1<br>A0              | A[3:0] = Define the divide ratio of the display clocks.<br>Divide ratio = A[3:0] +1<br>A[7:4] = Set the Oscillator Frequency. Frequency increases with the<br>value of A[7:4]. Range 0000b~1111b. | 0000b<br>0111b |
| Set Area Color<br>Mode ON/OFF &<br>Low Power<br>Display Mode   | 0 | D8<br>X[5:0]                         | 1<br>0               | 1<br>0               | 0<br>X5              | 1<br>X4              | 1<br>0               | 0<br>X2              | 0<br>0               | 0<br>X0              | X[5:4] = 00b; Monochrome mode<br>X[5:4] = 11b; Area Color mode<br>X[2] = 0 and X[0] = 0; Normal power mode<br>X[2] = 1 and X[0] = 1; Set low power display mode                                   | 00<br>00       |
| Set Pre-charge                                                 | 0 | D9                                   | 1                    | 1                    | 0                    | 1                    | 1                    | 0                    | 0                    | 1                    | A[3:0] = Phase 1 period of up to 15 DCLK clocks. 0 is invalid.<br>A[7:4] = Phase 2 period of up to 15 DCLK clocks. 0 is invalid.                                                                  | 2h<br>2h       |

| Period           |   | A[7:0] | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |                                             |      |
|------------------|---|--------|----|----|----|----|----|----|----|----|---------------------------------------------|------|
| Set COM pins     | 0 | DA     | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | X[4] = 0; Sequential COM pin configuration  |      |
| Hardware         |   | X[5:4] | 0  | 0  | X5 | X4 | 0  | 0  | 1  | 0  | X[4] = 1; Alternative COM pin configuration | 1    |
| configuration    |   |        |    |    |    |    |    |    |    |    | X[5] = 0; Disable COM Left/Right remap      |      |
| Soundariation    |   |        |    |    |    |    |    |    |    |    | X[5] = 1; Enable COM Left/Right remap       | 1    |
| Set VCOMH        | 0 | DB     | 1  | 1  | 0  | 1  | 1  | 0  | 1  | 1  | A[5:2] = 0000b; VCOMH = ~0.43*VCC           |      |
| Deselect Level   |   | A[5:2] | 0  | 0  | A5 | A4 | A3 | A2 | 0  | 0  | A[5:2] = 1101b; VCOMH = ~0.77*VCC           | 1101 |
|                  |   |        |    |    |    |    |    |    |    |    | A[5:2] = 1111b; VCOMH = ~0.83*VCC           |      |
| Enter Read       | 0 | EO     | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | Enter the Read/Modify/Write mode.           |      |
| Modify Write     |   |        |    |    |    |    |    |    |    |    |                                             |      |
| mode             |   |        |    |    |    |    |    |    |    |    |                                             |      |
| NOP              | 0 | E3     | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  | Command for No Operation                    |      |
| Exit Read Modify | 0 | EE     | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 0  | Exit the Read/Modify/Write mode.            |      |
| Write mode       |   |        |    |    |    |    |    |    |    |    |                                             |      |

For detailed instruction information, see datasheet: <u>http://www.newhavendisplay.com/app\_notes/SSD1305.pdf</u>

## **MPU Interface**

For detailed timing information, see datasheet: <u>http://www.newhavendisplay.com/app\_notes/SSD1305.pdf</u>

#### 6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS. A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation. A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write. The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

| Function      | E            | R/W | /CS | D/C |
|---------------|--------------|-----|-----|-----|
| Write Command | $\downarrow$ | 0   | 0   | 0   |
| Read Status   | $\downarrow$ | 1   | 0   | 0   |
| Write Data    | $\downarrow$ | 0   | 0   | 1   |
| Read Data     | $\downarrow$ | 1   | 0   | 1   |

#### 8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

| Function      | /RD        | /WR          | /CS | D/C |
|---------------|------------|--------------|-----|-----|
| Write Command | 1          | $\leftarrow$ | 0   | 0   |
| Read Status   | $\uparrow$ | 1            | 0   | 0   |
| Write Data    | 1          | $\uparrow$   | 0   | 1   |
| Read Data     | $\uparrow$ | 1            | 0   | 1   |

Alternatively, /RD and /WR can be kept stable while /CS serves as the data/command latch signal.

| Function      | /RD | /WR | /CS        | D/C |
|---------------|-----|-----|------------|-----|
| Write Command | 1   | 0   | $\uparrow$ | 0   |
| Read Status   | 0   | 1   | $\uparrow$ | 0   |
| Write Data    | 1   | 0   | $\uparrow$ | 1   |
| Read Data     | 0   | 1   | $\uparrow$ | 1   |

#### Serial Interface

The serial interface consists of serial clock SCLK, serial data SDIN, D/C, and /CS.

D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, and R/W should be connected to GND.

| Function      | /RD | /WR | /CS | D/C | D0           |
|---------------|-----|-----|-----|-----|--------------|
| Write Command | 0   | 0   | 0   | 0   | $\leftarrow$ |
| Write Data    | 0   | 0   | 0   | 1   | $\uparrow$   |

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDRAM or command register in the same clock.

Note: Read is not available in serial mode.

## **I<sup>2</sup>C** Interface

The I2C interface consists of a slave address bit SAO, I2C-bus data signal SDA, and I2C-bus clock signal SCL. D1 and D2 can be tied together, and act as SDA. D0 acts as SCL. Both the data and clock signals must be connected to pull-up resistors. /RES is used to initialize the device.

Note: SA0 bit allows the device to have a slave address of either "0111100" or "0111101".

**Note:** Data and acknowledgement are sent through the SDA. The ITO track resistance and the pull-up resistance at SDA becomes a voltage potential divider. As a result, it may not be possible to attain a valid logic "0" level on SDA for the ACK signal. SDA<sub>IN</sub> must be connected, but SDA<sub>OUT</sub> may be disconnected and the ACK signal will be ignored on the I2C bus.

For detailed protocol information, see datasheet: http://www.newhavendisplay.com/app\_notes/SSD1305.pdf

### **Example Initialization Sequence:**

Set Display On Off(0x00); Set\_Display\_Clock(0x10); Set Multiplex Ratio(0x1F); Set Display Offset(0x00); Set Start Line(0x00); Set Master Config(0x00); Set\_Area\_Color(0x05); Set\_Addressing\_Mode(0x02); Set\_Segment\_Remap(0x01); Set\_Common\_Remap(0x08); Set\_Common\_Config(0x10); Set LUT(0x3F,0x3F,0x3F,0x3F); Set Contrast Control(Brightness); Set Area Brightness(Brightness); Set Precharge Period(0xD2); Set VCOMH(0x08); Set Entire Display(0x00); Set\_Inverse\_Display(0x00); Fill RAM(0x00); Set\_Display\_On\_Off(0x01);

// Display Off (0x00/0x01) // Set Clock as 160 Frames/Sec // 1/32 Duty (0x0F~0x3F) // Shift Mapping RAM Counter (0x00~0x3F) // Set Mapping RAM Display Start Line (0x00~0x3F) // Disable Embedded DC/DC Converter (0x00/0x01) // Set Monochrome & Low Power Save Mode // Set Page Addressing Mode (0x00/0x01/0x02) // Set SEG/Column Mapping (0x00/0x01) // Set COM/Row Scan Direction (0x00/0x08) // Set Alternative Configuration (0x00/0x10) // Define All Banks Pulse Width as 64 Clocks // Set SEG Output Current // Set Brightness for Area Color Banks // Set Pre-Charge as 13 Clocks & Discharge as 2 Clock // Set VCOM Deselect Level // Disable Entire Display On (0x00/0x01) // Disable Inverse Display On (0x00/0x01) // Clear Screen // Display On (0x00/0x01)

## **Quality Information**

| Test Item                 | Content of Test                              | Test Condition                | Note |
|---------------------------|----------------------------------------------|-------------------------------|------|
| High Temperature storage  | Test the endurance of the display at high    | +90°C , 240hrs                | 2    |
|                           | storage temperature.                         |                               |      |
| Low Temperature storage   | Test the endurance of the display at low     | -40°C , 240hrs                | 1,2  |
|                           | storage temperature.                         |                               |      |
| High Temperature          | Test the endurance of the display by         | +85°C 240hrs                  | 2    |
| Operation                 | applying electric stress (voltage & current) |                               |      |
|                           | at high temperature.                         |                               |      |
| Low Temperature           | Test the endurance of the display by         | -40°C , 240hrs                | 1,2  |
| Operation                 | applying electric stress (voltage & current) |                               |      |
|                           | at low temperature.                          |                               |      |
| High Temperature /        | Test the endurance of the display by         | +60°C , 90% RH , 240hrs       | 1,2  |
| Humidity Operation        | applying electric stress (voltage & current) |                               |      |
|                           | at high temperature with high humidity.      |                               |      |
| Thermal Shock resistance  | Test the endurance of the display by         | -40°C,30min -> 25°C,5min ->   |      |
|                           | applying electric stress (voltage & current) | 85°C,30min = 1 cycle          |      |
|                           | during a cycle of low and high               | 100 cycles                    |      |
|                           | temperatures.                                |                               |      |
| Vibration test            | Test the endurance of the display by         | 10-22Hz , 15mm amplitude.     | 3    |
|                           | applying vibration to simulate               | 22-500Hz, 1.5G                |      |
|                           | transportation and use.                      | 30min in each of 3 directions |      |
|                           |                                              | X,Y,Z                         |      |
| Atmospheric Pressure test | Test the endurance of the display by         | 115mbar, 40hrs                | 3    |
|                           | applying atmospheric pressure to simulate    |                               |      |
|                           | transportation by air.                       |                               |      |
| Static electricity test   | Test the endurance of the display by         | VS=800V, RS=1.5kΩ, CS=100pF   |      |
|                           | applying electric static discharge.          | One time                      |      |

**Note 1:** No condensation to be observed.

**Note 2:** Conducted after 2 hours of storage at 25°C, 0%RH.

**Note 3:** Test performed on product itself, not inside a container.

#### **Evaluation Criteria:**

- 1: Display is fully functional during operational tests and after all tests, at room temperature.
- 2: No observable defects.
- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value

## Precautions for using OLEDs/LCDs/LCMs

See Precautions at <a href="http://www.newhavendisplay.com/specs/precautions.pdf">www.newhavendisplay.com/specs/precautions.pdf</a>

### Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main\_page=terms

Newhaven Display International, Inc. reserves the right to alter this product or specification at any time without notification.