

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NHD-C160100CZ-RN-FBW

COG (Chip-On-Glass) Liquid Crystal Display Module

Newhaven Display NHD-C160100-160 x 100 pixels

CZ-Model R-Reflective No backlight N-F-FSTN (+) B-6:00 view

W-Wide Temp $(-20^{\circ}C \sim +70^{\circ}C)$

RoHS Compliant

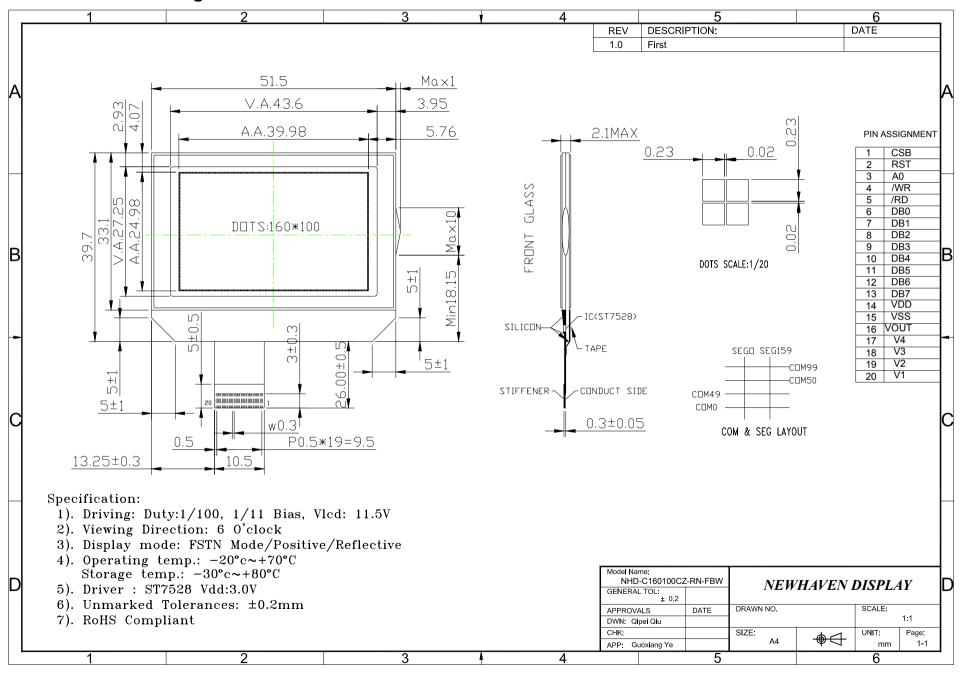
Newhaven Display International, Inc.

2511 Technology Drive, Suite 101 Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

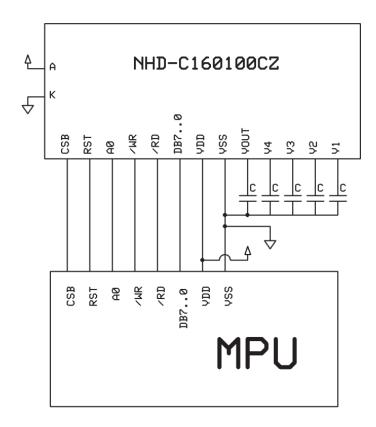

Document Revision History

Revision	Date	Description	Changed by
0	6/17/2007	Initial Release	-
1	9/11/2009	User guide reformat	BE
2	10/14/2009	Updated Electrical Characteristic	MC
3	12/08/2009	Updated Block Diagram, Pins 4 and 5, and Timing	MC
		Characteristics	

Functions and Features

- 160 x 100 pixels
- Built-in ST7528 controller
- +3.0V power supply
- 1/100 duty cycle; 1/11 bias
- RoHS Compliant

Mechanical Drawing



Pin Description and Wiring Diagram

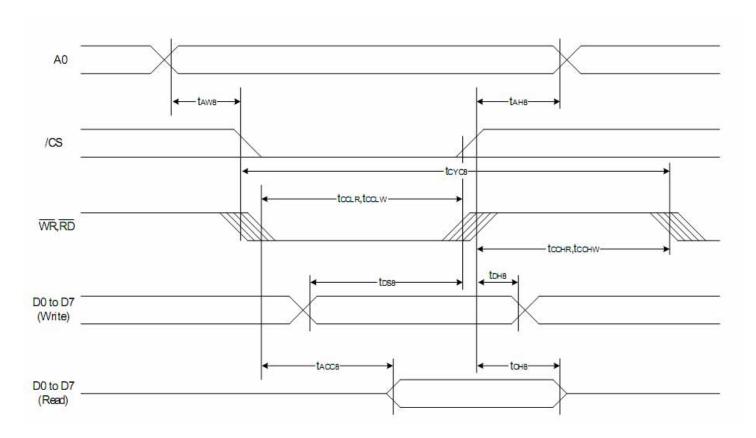
Pin No.	Symbol	External	Function Description
		Connection	
1	CSB	MPU	Active Low chip select
2	RST	MPU	Active Low Reset signal
3	A0	MPU	Register select signal. A0=1: Data, A0=0: Command
4	/WR	MPU	Active LOW write signal
5	/RD	MPU	Active LOW read signal
6-13	DB0-DB7	MPU	Bi-directional 8-bit data bus.
14	VDD	Power Supply	Power supply for LCD and logic (+3.0V)
15	Vss	Power Supply	Ground
16	VOUT	Power Supply	Connect to 1uF cap to VSS or VDD
17	V4	Power Supply	1.0uF-2.2uF cap to Vss
18	V3	Power Supply	1.0uF-2.2uF cap to Vss
19	V2	Power Supply	1.0uF-2.2uF cap to Vss
20	V1	Power Supply	1.0uF-2.2uF cap to Vss

Recommended LCD connector: 0.5mm pitch pins. Molex p/n: 52746-2070

Backlight connector: --- Mates with: ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	-	+70	°C
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	°C
Supply Voltage	VDD		2.8	3.0	3.3	V
Supply Current	IDD	Ta=25°C,	-	1.5	2.5	mA
		VDD=3.0V				
Supply for LCD (contrast)	VDD-V0	Ta=25°C	-	11.5	-	V
"H" Level input	Vih		2.2	-	VDD	V
"L" Level input	Vil		0	-	0.6	V
"H" Level output	Voh		2.4	-	-	V
"L" Level output	Vol		-	-	0.4	V


Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle - Vertical	θ	Cr≥2	-60	-	+35	0
Viewing Angle - Horizontal	Ф		-40	-	+40	0
Contrast Ratio	CR		-	6	-	-
Response Time (rise)	Tr	-	-	150	250	ms
Response Time (fall)	Tf	-	-	150	250	ms

Controller Information

Built-in ST7528. Download specification at http://www.newhavendisplay.com/app notes/ST7528.pdf

Timing Characteristics

(VDD = 3.3V , Ta =25°C)

lto	Ciamal	Cumbal	Condition	Rat	Units	
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tCYC8		240	_	
Enable L pulse width (WRITE)	WR	tCCLW		80	_	
Enable H pulse width (WRITE)	VVIX	tCCHW		80	_	
Enable L pulse width (READ)	- RD	tCCLR		140	_	ns
Enable H pulse width (READ)	, KD	tCCHR		80		
WRITE Data setup time		tDS8		40	_	
WRITE Data hold time	D0 to D7	tDH8		10	_	
READ access time	- D0 to D7	tACC8	CL = 100 pF	_	70	
READ Output disable time		tOH8	CL = 100 pF	5	50	

Table of Commands

Instruction	Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=0 or 1											
	0	0	0	0	1	1	1	0	0	0	2-byte instruction to set
Mode Set		0	FR3	FR2	FR1	FR0	0	BE	x'	EXT	Mode and FR(Frame frequency control) BE(Booster efficiency control
EXT=0											
Read display data	1	1				Read	data				Read data into DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	x'	x'	2-byte instruction to specify the initial display line to realize
Set ilitiar display life register	0	0	X'	S6	S5	S4	S3	S2	S1	S0	vertical scrolling
Set in this I COMM services	0	0	0	1	0	0	0	1	x'	X,	2-byte instruction to specify
Set initial COM0 register	0	0	x'	C6	C5	C4	С3	C2	C1	CO	the initial COM0 to realize window scrolling
	0	0	0	1	0	0	1	0	x'	X [†]	2-byte instruction to set partial
Set partial display duty ration	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display duty ratio
	0	0	0	1	0	0	1	1	x'	X'	2-byte instruction to set N-line
Set N-line inversion	0	0	x'	x'	x'	N4	N3	N2	N1	N0	nversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Example Initialization Program

```
void write command(unsigned char datum)
A0=0;
                                                                              /*Instruction register*/
                                                                              /*Read inactive*/
E=1;
P1 = datum;
                                                                              /*put data on port 1*/
CS1=0;
                                                                              /*Chip select active*/
RW=0;
                                                                              /*Write active*/
RW=1;
                                                                              /*Write inactive; latch in data*/
CS1=1;
                                                                              /*Chip select inactive*/
//-----
void write data(unsigned char datum)
                                                                              /*DDRAM data register*/
A0=1;
E=1;
P1=datum;
CS1=0;
RW=0;
RW=1;
CS1=1;
void lcd init(void){
    write command(0xA2);
                            //ICON OFF;
    write_command(0xAE);
                            //Display OFF
    write command(0x48);
                            //Set Duty ratio
    write_command(0x80);
                            //No operation
    write_command(0xa1);
                            //Set scan direction //changed from 0 to 1
    write command(0xc8);
                            //SHL select
    write_command(0x40);
                            //Set START LINE
    write_command(0x00);
    write_command(0xab);
                            //OSC on
    write_command(0x64);
                            //3x
    delay(2000);
    write_command(0x65);
                            //4x
    delay(2000);
                            //5x
    write_command(0x66);
    delay(2000);
    write_command(0x67);
                            //6x
    delay(2000);
    write_command(Ra_Rb);
                            //RESISTER SET
    write_command(0x81);
                            //Set electronic volume register
    write_command(vopcode); //n=0~3f
    write_command(0x57);
                            //1/12bias
    write_command(0x92);
                            //FRC and pwm
    write_command(0x2C);
    delay(20000);//200ms
```

```
write command(0x2E);
delay(20000);//200ms
write command(0x2F);
delay(20000);//200ms
write command(0x92);
                        //frc and pwm
write command(0x38);
                        //external mode
write command(0x75);
    //start settings for 16-level grayscale
                        //3frc,45pwm
write_command(0x97);
write_command(0x80);
write command(0x00);
write command(0x81);
write_command(0x00);
write_command(0x82);
write_command(0x00);
write_command(0x83);
write_command(0x00);
write command(0x84);
write command(0x06);
write_command(0x85);
write_command(0x06);
write command(0x86);
write command(0x06);
write_command(0x87);
write_command(0x06);
write_command(0x88);
write command(0x0b);
write command(0x89);
write command(0x0b);
write command(0x8a);
write_command(0x0b);
write_command(0x8b);
write command(0x0b);
write command(0x8c);
write command(0x10);
write_command(0x8d);
write_command(0x10);
write command(0x8e);
write command(0x10);
write command(0x8f);
write_command(0x10);
write command(0x90);
write_command(0x15);
write command(0x91);
write command(0x15);
write_command(0x92);
write_command(0x15);
write_command(0x93);
write_command(0x15);
write command(0x94);
write command(0x1a);
write_command(0x95);
write_command(0x1a);
write_command(0x96);
```

write command(0x1a);

```
write command(0x97);
write_command(0x1a);
write command(0x98);
write_command(0x1e);
write_command(0x99);
write command(0x1e);
write command(0x9a);
write command(0x1e);
write command(0x9b);
write_command(0x1e);
write_command(0x9c);
write command(0x23);
write command(0x9d);
write_command(0x23);
write_command(0x9e);
write_command(0x23);
write_command(0x9f);
write_command(0x23);
write command(0xa0);
write_command(0x27);
write_command(0xa1);
write_command(0x27);
write command(0xa2);
write command(0x27);
write_command(0xa3);
write_command(0x27);
write_command(0xa4);
write command(0x2b);
write command(0xa5);
write command(0x2b);
write command(0xa6);
write_command(0x2b);
write_command(0xa7);
write command(0x2b);
write command(0xa8);
write_command(0x2f);
write_command(0xa9);
write_command(0x2f);
write command(0xaa);
write command(0x2f);
write command(0xab);
write_command(0x2f);
write_command(0xac);
write_command(0x32);
write command(0xad);
write command(0x32);
write_command(0xae);
write_command(0x32);
write_command(0xaf);
write_command(0x32);
write command(0xb0);
write command(0x35);
write_command(0xb1);
write_command(0x35);
write_command(0xb2);
write command(0x35);
```

```
write command(0xb3);
   write_command(0x35);
   write_command(0xb4);
   write_command(0x38);
   write_command(0xb5);
   write command(0x38);
   write_command(0xb6);
   write_command(0x38);
   write_command(0xb7);
   write_command(0x38);
   write_command(0xb8);
   write_command(0x3a);
   write_command(0xb9);
   write_command(0x3a);
   write_command(0xba);
   write_command(0x3a);
   write_command(0xbb);
   write_command(0x3a);
   write_command(0xbc);
   write_command(0x3c);
   write_command(0xbd);
   write_command(0x3c);
   write_command(0xbe);
   write command(0x3c);
   write_command(0xbf);
   write_command(0x3c);
        //end settings for 16-level grayscale
   write_command(0x38);
   write command(0x74);
   write_command(0xaf); //Display ON
//-----
```

}

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 48hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 48hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 48hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 48hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C, 90% RH, 48hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	-0°C,30min -> 25°C,5min -> 50°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms