

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

QUAD OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2060 integrated circuit is a high-gain, wide-bandwidth, quad operational amplifier capable of driving 20V peak-to-peak into 400Ω loads. The NJM2060 combines many of the features of the NJM2058 as well as providing the capability of wider bandwidth, and higher slew rate make the NJM2060 ideal for active filters, data and telecommunications, and many instrumentation applications. The availability of the NJM2060 in the surface mounted micro-package allows the NJM2060 to be used in critical applications requiring very high packing densities. Each amplifier of the NJM2060 has the same electrical characteristics of the NJM4560.

■ PACKAGE OUTLINE

NJM2060D

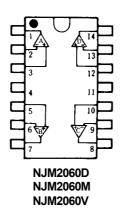
NJM2060M

NJM2060V

■ FEATURES

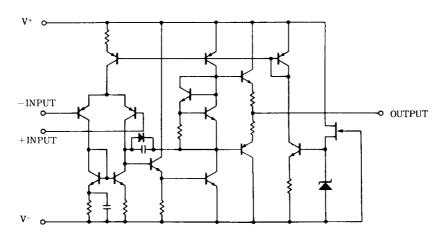
Operating Voltage (±4V~±18V)

Low Noise Voltage (RIAA 1.2µVrms typ.)


Slew Rate (4V/µs typ.)Unity gain Bandwidth (10MHz typ.)

• High Output Current (25mA)

Package Outline
 DIP14,DMP14,SSOP14


Bipolar Technology

■ PIN CONFIGURATION

PIN FUNCTION
1. A OUTPUT
2. A -INPUT
3. A +INPUT
4. V[†]
5. B +INPUT
6. B -INPUT
7. B OUTPUT
8.C OUTPUT
9. C -INPUT
10.C +INPUT
11.V
12.D +INPUT
14.D OUTPUT

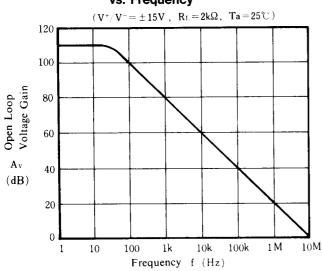
■ EQUIVALENT CIRCUIT (1/4 Shown)

■ ABSOLUTE MAXIMUM RATINGS

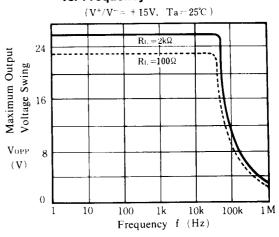
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	± 18	V
Differential Input Voltage	V_{ID}	± 30	V
Input Voltage	V _{IC}	± 15 (note1)	V
Power Dissipation	P _D	(DIP14) 700 (DMP14) 700 (note2) (SSOP14) 300	mW
Operating Temperature Range	T _{opr}	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

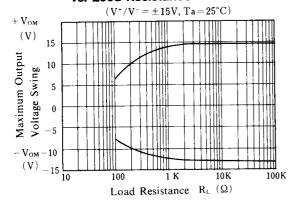
(note1) For supply voltage less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage. (note2) At on PC board

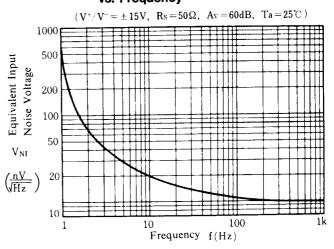

■ ELECTRICAL CHARACTERISTICS

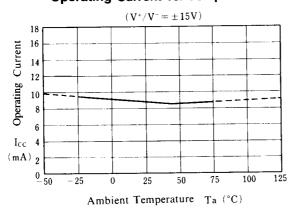
 $(Ta=25^{\circ}C,V^{\dagger}=15V,V^{\Xi}-15V)$

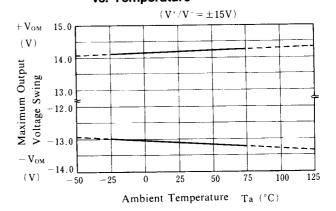

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	0.5	6	mV
Input Offset Current	I _{IO}		-	5	200	nA
Input Bias Current	Ι _Β		-	40	500	nA
Input Resistance	R _{IN}		100	500	-	kΩ
Large Signal Voltage Gain	A_V	R _L ≥2kΩ,V _O =±10V	86	100	-	dB
Maximum Output Voltage Swing 1	V_{OM1}	R _L ≥10kΩ	± 12	± 14	-	V
Maximum Output Voltage Swing 2	V_{OM2}	Io=25mA	± 10	± 11.5	-	V
Input Common Mode Voltage Range	V_{ICM}		± 12	± 14	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	76	90	-	dB
Operating Current	Icc		-	9	14	mA
Slew Rate	SR		-	4	-	V/µs
Gain Bandwidth Product	GB		-	10	-	MHz
Equivalent Input Noise Voltage	V_{NI}	RIAA,R _S =2.2kΩ,30kHz LPF	-	1.2	-	μVrms

■ TYPICAL CHARACTERISTICS

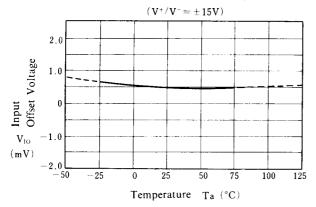

Open Loop Voltage Gain vs. Frequency


Maximum Output Voltage Swing vs. Frequency

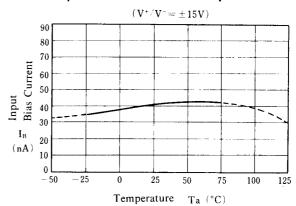

Maximum Output Voltage Swing vs. Lood Resistance


Equivalent Input Noise Voltage vs. Frequency

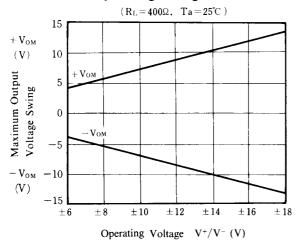
Operating Current vs. Temperature

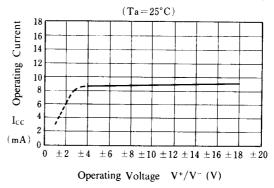


Maximum Output Voltage Swing vs. Temperature



■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature


Input Bias Current vs. Temperature

Maximum Output Voltage Swing vs. Operating Voltage

Operating Current vs. Operating Voltage

■ TYPICAL CHARACTERISTICS

0.002

$\label{eq:Total Harmonic Distortion}$ $(\,V^{\scriptscriptstyle +}/V^{\scriptscriptstyle -}=\pm\,15V\,,\;\;Gain\!=\!40dB,\;\;R_L\!=\!10k\Omega\,,$

Output Voltage Vo (Vrms)

Total Harmonic Distortion

$$(V^+/V^-=\pm 15 V, \ Gain=40 dB, \ R_L=2k\Omega \ , \\ Ta=25^\circ C)$$

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.