

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

JRC

LOW VOLTAGE POWER AMPLIFIER

■ GENERAL DESCRIPTION

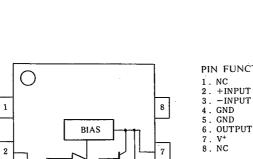
NJM2070 is a power amplification monolithic IC of wide Operating voltage range. It is applied for audio power amplifier in portable radio and handy cassette player.

3

4

■ FEATURES

Operating Voltage


(1.8V~15V)

Low Operating Current

 $4mA typ : V^+=6V)$ DIP8, DMP8

Package Outline Bipolar Technology

■ PIN CONFIGURATION

50 kΩ

100 kΩ

6

5

NJM2070D NJM2070M

■ PACKAGE OUTLINE

NJM2070M

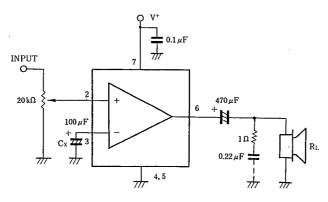
PIN FUNCTION

- 6. OUTPUT 7. V⁺ 8. NC

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

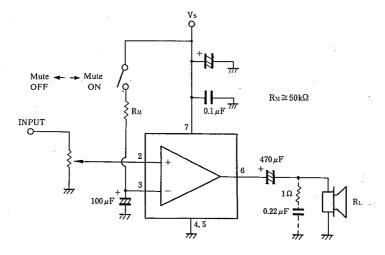
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	15	V
Output Peak Current	lop	1	A
Power Dissipation	PD	(DIP8) 700 (DMP8) 500 (note)	mW
Operating Temperature Range	Topr	-40~+85	
Storage Temperature Range	Tstg	-40~+125	°C


(note) At on PC board

■ ELECTRICAL CHARACTERISTICS

(V*=6V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8		15	v
Output Voltage	V _o		<u> </u>	2.7	<u> </u>	ν
Operating Current	lcc	$R_L = \infty$	—	4	7	mA
Input Bias Current	I _{IB}		_	200	l —	nA
Output Power		THD=10%, f=1kHz		l		
	Po	$V^{+}=6V$, $R_L=4\Omega$	0.5	0.6	—	w
	Po	$V^{+}=4.5V$, $R_L=4\Omega$	<u> </u>	0.32	 	w
	Po	$V^{+}=3V$, $R_L=4\Omega$		120	 	mW
	Po	$V^{+}=2V$, $R_L=4\Omega$	<u> </u>	30	_	mW
		THD=1%, f=1kHz				
	Po	$V^{+}=6V$, $R_L=4\Omega$		500	<u> </u>	mW
•	Po	$V^{+}=4.5V, R_{L}=4\Omega$		250		mW
Total Harmonic Distortion	THD	$P_0 = 0.4W$, $R_L = 4\Omega$, $f = 1kHz$		0.25	—	%
Voltage Gain	Aν	ſ=1kHz	41	44	47	dB
Input Impedance	Z _{IN}	f=1kHz	100		—	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_S = 10k\Omega$, A Curve	l	2.5		μ٧
	V _{N12}	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$	—	3	<u> </u>	μ٧
Ripple Rejection	RR	$f = 100 \text{Hz}, C_X = 100 \mu \text{F}$	24	30	—	dB
Cut Off Frequency	f _H	$A_V = -3dB$ from $f = 1kHz$	—	200		kHz
		$R=8\Omega$, $P_O=250$ mW	i			


■ TYPICAL APPLICATION AND TEST CIRCUIT

■ OSCILLATION PREVENTION

Put in series a 1Ω resistor and a 0.22 μ F capacitor on parallel to load, if the load is speaker. Recommend putting in parallel between pin 4 and pin 7, 0.1 μ F and more than 100 μ F capacitors with good high frequency characteristics near to the ground and supply voltage pins on parallel.

■ MUTING CIRCUIT

NJM2070

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.