

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DUAL LOW VOLTAGE POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2076 is a dual power amplifier, which operates with 1.0V minimum supply voltage. The NJM2076 is suitable to small radio and head-phone of stereo and single BTL application.

■ FEATURES

- BTL operation Po=90mW type.
- Minimum external components
- Headphone stereo Amp. with external transistors

Low Operation Voltage

(1.0V MIN.)

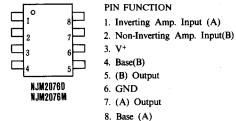
Low Operating Current

(4.7mA TYP.)

Package Outline

DIP8, DMP8

Bipolar Technology

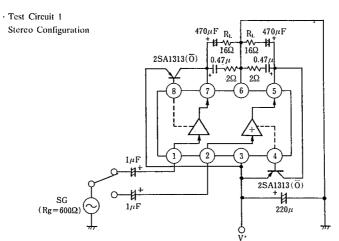

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

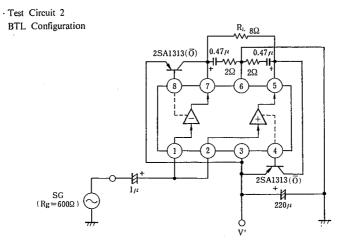
NJM2876M

■ ABSOLUTE MAXIMUM RATINGS

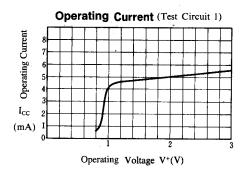
(Ta=25℃)

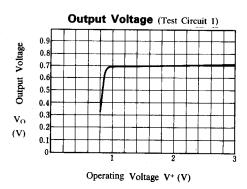

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	4.5		
Maximum Input Signal	V _{IN}	200	mVrms	
Power Dissipation	PD	(DIP 8) 500		
		(DMP 8) 500	mW	
Operating Temperature Range	Topr	-20~+75	r	
Storage Temperature Range	T _{stg}	-40~+125	C	

■ ELECTRICAL CHARACTERISTICS


(Ta=25 $^{\circ}$ C, V⁺=1.5V)

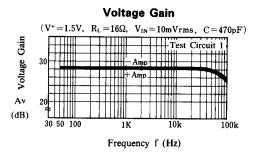
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _∞	Input: Open	_	4.7	7.0	mA
(I) Stereo Configuration (Test Circuit 1. R _L	=16Ω)			<u></u>	1	
Voltage Gain	Av	V _{IN} =10mVrms	26.5	28.0	29.5	dB
Max. Output Power	Poi	THD=10%(D, M-Type)	15	17.5	-	mW
	Po ₂	THD=10%, V ⁺ =1.0V	_	3	_	mW
Total Harmonic Distortion	THD	$P_O = 1 \text{mW} (126 \text{mVrms}/16\Omega)$		0.4	0.8	%
Output Noise Voltage	V _{NO1}	Rg=0, A Curve		50	150	μV
Ripple Rejection Ratio	RR,	$Rg=0.f_R=1kHz, V_R=30mvrms$	25	35	_	dB
Input Resistance	R _{IN}	, , ,	25	33	43	kΩ
Output Pin Voltage	Vo (DC)		0.62	0.70	0.77	v
(II) BTL Configuration (Test Circuit 2, R _L =80	1)		<u>. J </u>			
Max. Output power	P _{O3}	THD=10% (D,M-Type)	75	90	_	mW
	P _{O4}	THD=10%. V+=1.0V(D, M-Type)	-	20	_	mW
Total Harmonic Distortion	THD ₂	$P_{\Omega} = 10 \text{mW} (283 \text{mVrms}/8\Omega)$	_	1.5	4.5	%
Output Noise Voltage	V _{NO2}	Rg=0, A Curve	_	85	250	μV
Ripple Rejection Ratio	RR ₂	$Rg=0$, $f_R=1kHz$, $V_R=30mVrms$	20	25	_	dB
Voltage Difference between Two Output Pins	ΔV_0 (DC)	,	-	_	50	mV
		L	1		l	

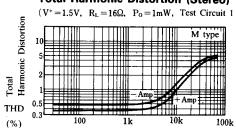

■ TEST CIRCUIT



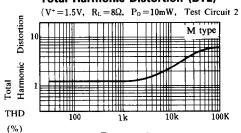
2SA1313(Ö): h_{FF}=115~125 (Ic=100mA)




■ TYPICAL CHARACTERISTICS

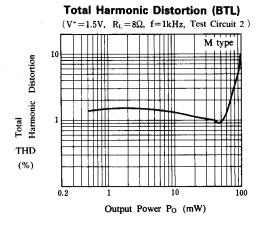


Operating Current (Stereo)

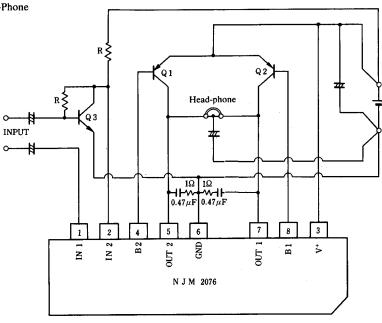


Total Harmonic Distortion (Stereo)

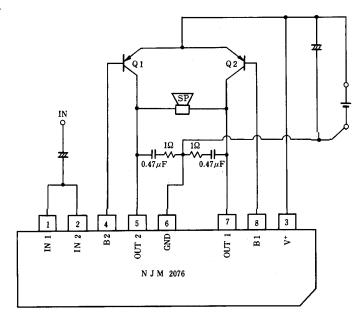
Frequency f (Hz)


Total Harmonic Distortion (BTL)

Frequency f (Hz)


■ TYPICAL CHARACTERISTICS

Total Harmonic Distortion (Stereo) (V+=1.5V, R_L=16Q, f=1kHz, Test Circuit 1) M type 10 NH type 10 NH



■ TYPICAL APPLICATION

1. For Stereo Head-Phone

2. BTL Amp. for Speaker

■ NOTICE

(1) External PNP Transistor

Maximum output power becomes large with low saturation voltage transistor, and so select transistor of low saturation. Saturation Voltage: less than 0.1V (Ic=100mA. $I_B=10mA$). h_{FE} : 120

(2) External Frequency Compensation

Recommend tantalum capacitor with low tan δ (less than 0.25 at f=10kHz) and 1 Ω resistor. Stable with large capacitor of less high frequency distortion and worse tan δ . For example: $1\mu F$, tan $\delta \leq 0.6$

(3) Layout on PCB

Be careful to get maximum output power and low distortion set.

DIP/DMP: Signal ground has to be close to IC ground pin. Impedance of ground line must be low.

NJM2076

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.