

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NJM2122M

ULTRA LOW NOISE DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

■ PACKAGE OUTLINE

NJM2122D

The NJM2122 is an ultra low noise dual operational amplifier.

The features of ultra low noise, low operating voltage, and low saturation voltage are suitable for microphone amplifier of digital audio items such as portable MD,DAT,and others.

Ultra Low Noise Voltage (1.5nV/√Hz typ.@ f=1kHz)

• Low Saturation Output Voltage (0.3V typ.)

• Bipolar Technology

■ PIN CONFIGURATION

Package Outline
 DIP8,DMP8

-

1 8 8 7 7 3 4 NJM2122D NJM2122M

PIN FUNCTION

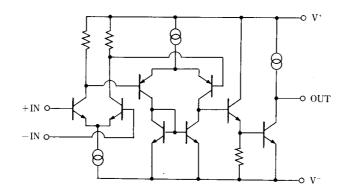
1.A OUTPUT

2.A -INPUT

3.A +INPUT

4.V

5.B +INPUT


6.B -INPUT

7.B OUTPUT

8.V

*

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

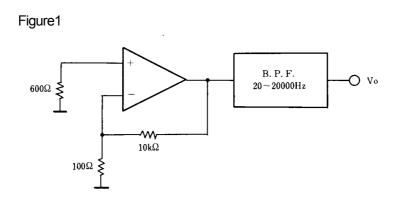
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	± 10	V
Differential Input Voltage	V_{ID}	± 0.5	V
Input Voltage	V _{IC}	± 10 (note)	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

(note) When the supply voltage is less than ± 10 V, the absolute maximum input voltage is equal to the supply voltage.

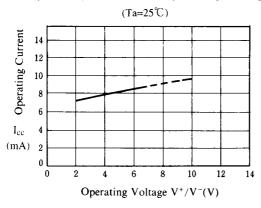
■ ELECTRICAL CHARACTERISTICS

 $(V^{\dagger}=5V,Ta=25^{\circ}C)$

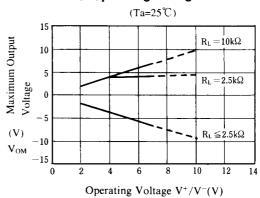

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage 1	Vope1	DIP Package	± 2.0	-	± 10.0	V
Operating Voltage 2	Vope2	DMP Package	± 2.0	-	± 7.0	V
Operating Current	Icc	V _{IN} =0V,R _L =∞Ω	-	7.0	9.5	mA
Input Offset Voltage	V _{IO}	R _S =500Ω	-	1.0	6.0	mV
Input Offset Current	I _{IO}		-	0.45	1.50	μA
Input Bias Current	lΒ		-	3.6	8.0	μA
Large Signal Voltage Gain	A_V	R _L ≥10kΩ	80	100	-	dB
Input Common Mode Voltage Range	V_{ICM}		± 0.7	± 1.0	-	V
Common Mode Rejection Ratio	CMR		60	74	-	dB
Supply Voltage Rejection Ratio	SVR		60	80	-	dB
Maximum Output Voltage	V_{OM}	R _L ≥2.5kΩ	± 2.0	± 2.2	-	V
Slew Rate	SR	G_V =20dB, V_{IN} =± 0.1V	-	2.4	-	V/µs
Gain Bandwidth Product	GB		-	12	-	MHz
Equivalent Input Noise Voltage 1	e _{n1}	$R_S=10\Omega, f=1kHz$	-	1.5	-	nV√Hz
Equivalent Input Noise Voltage 2	e _{n2}	*Figure1	-	0.56	0.75	μVrms
Channel Separation	CS	f=1kHz	-	90	-	dB
Total Harmonic Distortion	THD	V _O =1Vrms,f=1kHz	-	0.003	-	%
		G_V =20dB, R_L =2.5k Ω				

(note) Between 30 to 50dB voltage gain is recommended.

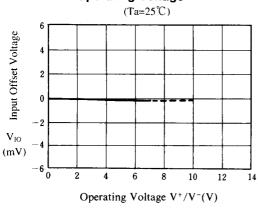
In case of voltage gain less than 30dB, phase compensation by external circuit is required.

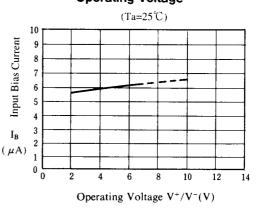

The voltage follower circuit must not be used.

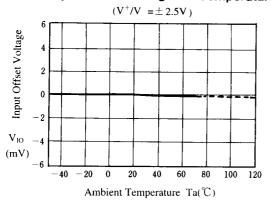
DMP package should be used in operating voltage less than $\pm 7V$, because of the P_{D} limitation.

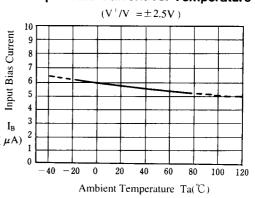


■ TYPICAL CHARACTERISTICS

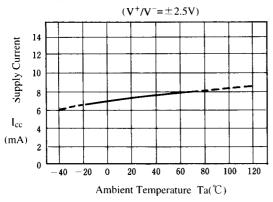

Operating Current vs. Operating Voltage


Maximum Output Voltage vs. Operating Voltage

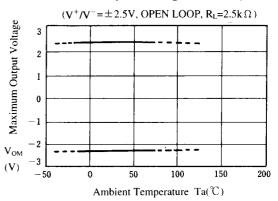

Input Offset Voltage vs. Operating Voltage


Input Bias Current vs.
Operating Voltage

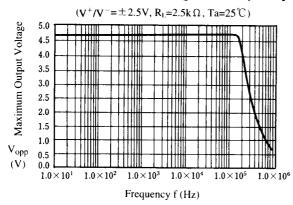
Input Offset Voltage vs. Temperature

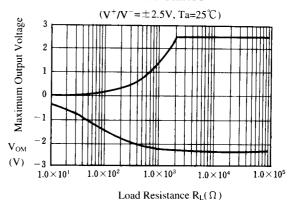


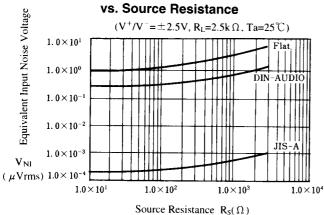
Input Bias Current vs. Temperature



■ TYPICAL CHARACTERISTICS

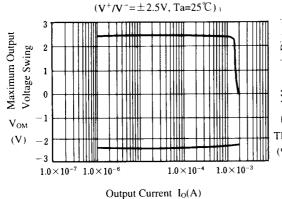

Operating Current vs. Temperature


Maximum Output Voltage vs. Temperature


Maximum Output Voltage vs. Frequency

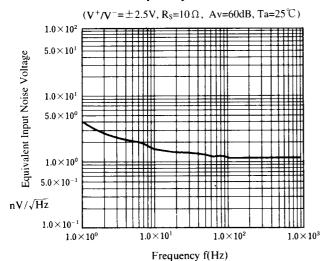
Maximum Output Voltage vs. Load Resistance

Equivalent Input Noise Voltage



Output Voltage vs. Source Resistance

■ TYPICAL CHARACTERISTICS


Maximum Output Voltage Swing vs. Output Current

Total Harmonic Distortion vs. Output Voltage

Equivalent Input Noise Voltage vs. Frequency

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.