imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VIDEO EQUALIZER

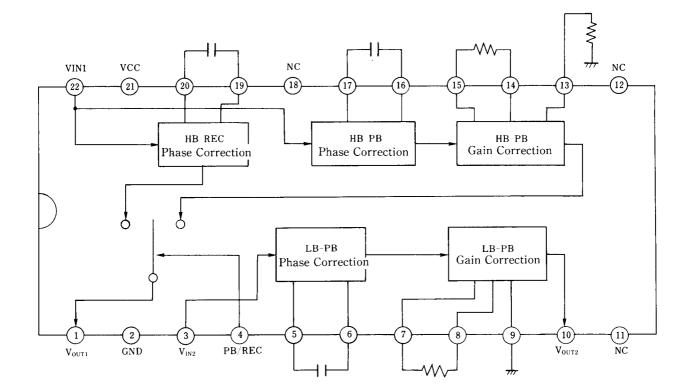
■ GENERAL DESCRIPTION

NJM2258 is the IC functioning the gain high pass correction, as well as for equalizing function of wave distortion correction, generated by bright signal of group delay feature like low band filter. It has internalizing REC line, one circuit, and then the playback line 2cirucuit.

■ FEATURES

- 5V Spec, (Recmmended Operating Voltage Range)
- Wide Band Width, 10MHz
- REC / PLAYBACK Change over function attached
- Package Outline SDIP22
- Bipolar Technology

■ APPLICATION


- VCR (S-VHS compatible)
- Video Camera
- Laser Disc

BLOCK DIAGRAM

PACKAGE OUTLINE

NJM2258L

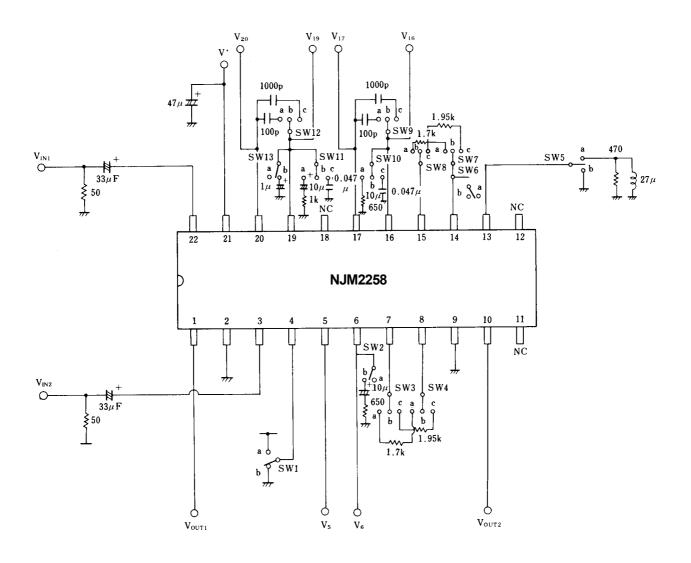
■ ABSOLUTE MAXIMUM RATIN	IGS		(T _a =25°C)
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	7	V
Power Dissipation	PD	700	mW
Operating Temperature Range	T _{opr}	-20 to +75	°C
Storage Temperature Range	T _{stg}	- 40 to +125	С°

■ ELECTRICAL CHARACTERISTICS

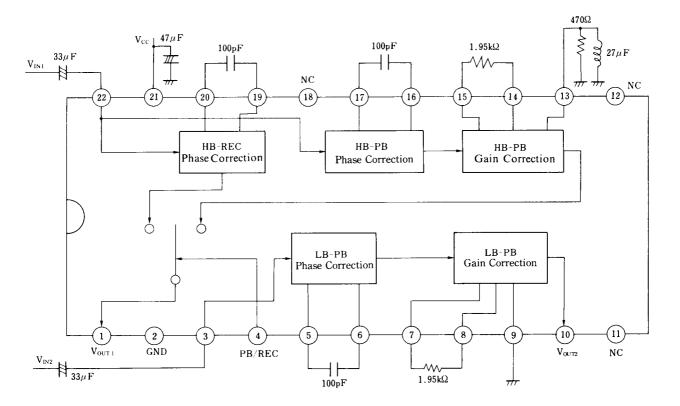
 $(V^+ = 5V, T_a = 25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	l _P	No Signal	-	26	34	mA
HB-REC						
Phase Positive Gain	G _{af}	f _{IN} = 100KHz 19PINOUT	-1	0	+1	dB
Phase Negative Gain	G _{ar}	f _{IN} = 100KHz 20PINOUT	-6.4	-5.4	-4.4	dB
19pin Impedance	AT19	f _{IN} = 100KHz	-7.0	-6.0	-5.0	dB
Output Gain LOW	Gal	f _{IN} = 100KHz	-1	0	+1	dB
Output Gain HIGH	G _{ah}	f _{IN} = 5MEGHz	-1	0	+1	dB
Output Gain f Feature	ΔGa	Gah - Gal	-1	0	+1	dB
Output Secondary Distortion	DA2	FIIN = 5MEG v_{IN} = 1.0 V_{PP}		-40	-30	dB
Output the third Distortion	DA3	f _{IN} 5MEG v _{IN} = 1.0V _{PP}		-36	-30	dB
НВ-РВ						
Positive Phase Gain	G _{bf}	f _{IN} = 100KHz 16PINOUT	-1	0	+1	dB
Negative Phase Gain	G _{br}	f _{IN} = 100KHz 17PINOUT	-0.2	0.8	1.8	dB
16 Impedance	AT ₁₆	f _{IN} = 100KHz	-7.0	-6.0	-5.0	dB
Output Gain	G _{ca}	f _{IN} = 100KHz	-6.1	-5.0	-4.0	dB
15-14 Impedance	ΔG_c	15PIN-14PIN = 1.7KΩ	4.5	5.5	6.5	dB
Output Gain LOW	G _{cbl}	f _{IN} = 100KHz	-1	0	+1	dB
Output Gain HIGH	G _{cbh}	f _{IN} = 5MEGHz	2	3	4	dB
Output Gain f Feature	ΔG_b	Gcbh - Gcbl	2	3	4	dB
Output Secondary Distortion	DC2	$f_{IN} = 5MEG v_{IN} = 1.0V_{PP}$		-30	-25	dB
Output the third Distortion	DC3	$f_{IN} = 5MEG v_{IN} = 1.0V_{PP}$		-27	-22	dB
LB-PB						
Positive Phase Gain	G _{df}	f _{IN} = 100KHz 6PINOUT	-1	0	+1	dB
Negative Phase Gain	G _{dr}	f _{IN} = 100KHz 5PINOUT	-0.2	0.8	1.8	dB
6 Impedance	AT6	f _{IN} = 100KHz	-7.0	-6.0	-5.0	dB
Output Gain	G _{da}	f _{IN} = 100KHz	-6.1	-5.1	-4.1	dB
7-8 Impedance	ΔG_d	7PIN - 8PIN = 1.7KΩ	4.5	5.5	6.5	dB
Output Gain LOW	G _{ebl}	f _{IN} = 100KHz		+1	0	dB
Output Gain HIGH	Gebh	f _{IN} = 5MEGHz	-1	0	+1	dB
Output Gain f Feature	ΔG _e	Gebh - Gebl	-1	0	+1	dB
Output Secondary Distortion	DE2	$f_{IN} = 5MEG v_{IN} = 1.0V_{PP}$		-35	-28	dB
Output the third Distortion	DE3	$f_{IN} = 5MEG v_{IN} = 1.0V_{PP}$		-36	-30	dB

TERMINAL FUNCTION


PIN	PIN NAME	SYMBOL	FUNCTION
1	HB-REC / PB OUT	VOUT1	HB type (S-VHS) Correction Output Pin
2	GND	GND	Ground
3	LB-PB IN	VIN2	LB type, (VHS) play-back signal Input Pin
4	HB-REC / PB Change over	PB REC	HB type, Change-over output of REC signal or Play-back signal High makes play-back signal output, and low makes REC signal output.
5	LB-PB Phase Correction Pin 1	LPC1	Connecting capacitor between Pin 5 to 6, which helps to give feature of correcting the group delay.
6	LB-PB Phase Correction Pin 2	LPC2	Connecting capacitor between Pin 5 to 6, which helps to give feature of correcting the group delay.
7	LB-PB Gain Correction Pin 1	LGC1	Setting up Gain by connecting resistor between Pin 7 to 8.
8	LB-PB Gain Correction Pin 2	LGC2	Setting up Gain by connecting resistor between Pin 7 to 8.
9	LB-PB Gain Correction Pin 3	LP	Connecting L-C parallel resonance between pin 9 to GND, helps to give High band keeping, and if not required of keeping connect to GND.
10	LB-PB OUT	VOUT2	LB type Output pin
11	N.C		N.C pin
12	N.C		N.C pin
13	LB-PB Gain Correction Pin 3	HP	Connecting L-C parallel resonance between pin 13 to GND, helps to give High band keeping, and if not required of keeping connect to GND.
14	LB-PB Gain Correction Pin 2	HPG1	Setting up Gain by connecting resistor between Pin 14 to 15.
15	LB-PB Gain Correction Pin 1	HPG2	Setting up Gain by connecting resistor between Pin 14 to 15.
16	LB-PB Phase Correction Pin 2	HPC1	Connecting Capacitor between Pin 16 to 17, which helps to give feature of correcting the group delay.
17	LB-PB Phase Correction Pin 1	HPC2	Connecting Capacitor between Pin 16 to 17, which helps to give feature of correcting the group delay.
18	N.C		N.C pin
19	LB-PB Phase Correction Pin 2	HRC1	Connecting Capacitor between Pin 19 to 20, which helps to give feature of correcting the group delay.
20	LB-PB Phase Correction Pin 1	HRC2	Connecting Capacitor between Pin 19 to 20, which helps to give feature of correcting the group delay.
21	V^{+}	V _{CC}	Voltage Source.
22	HB-REC / PB IN		HB type Input pin.

NJM2258


TEST CONDITION

PARAMETER		1				SW	-CO		TIOI	N	TEST PIN	TEST CONDITION			
	1	2	3	4	5	6	7	8	9	10	11	12	13	12011 #1	TEOTOGRADINON
l _P	а	а	b	b	b	а	b	b	b	b	b	b	а		
GA _f	b													V19	f=100kHz, V=0.5V _{P-P}
GAr													b	V20	f=100kHz, V=0.5V _{P-P}
AT19											а		а	V19	f=100kHz, V=0.5V _{P-P}
Gal											b	а		VOUT1	f=100kHz, V=0.5V _{P-P}
Gah											b	а		VOUT1	f=5MHz, V=0.5V _{P-P}
DA2												С		VOUT1	f=5MHz, V=1.0V _{P-P}
DA3												с		VOUT1	f=5MHz, V=1.0V _{P-P}
Gbf														V16	f=100kHz, V=0.5V _{P-P}
Gbr														V17	f=100kHz, V=0.5V _{P-P}
AT16										а				V16	f=100kHz, V=0.5V _{P-P}
Gca	а								а	b				VOUT1	f=100kHz, V=0.5V _{P-P}
ΔGca							а	а						VOUT1	f=100kHz, V=0.5V _{P-P}
Gcb1					а		с	С						VOUT1	f=100kHz, V=0.5V _{P-P}
Gcbh					а		с	С						VOUT1	f=5MHz, V=0.5V _{P-P}
DC2					b		с	С	с					VOUT1	f=5MHz, V=1.0V _{P-P}
DC3					b		с	С	с					VOUT1	f=5MHz, V=1.0V _{P-P}
Gdf	а										b	а		V6	f=100kHz, V=0.5V _{P-P}
Gdr														V5	f=100kHz, V=0.5V _{P-P}
AT6		b												V6	f=100kHz, V=0.5V _{P-P}
Gda		а												VOUT2	f=100kHz, V=0.5V _{P-P}
ΔGd			а	а										VOUT2	f=100kHz, V=0.5V _{P-P}
Geb1			с	с										VOUT2	f=100kHz, V=0.5V _{P-P}
Gebh			С	С										VOUT2	f=5MHz, V=0.5V _{P-P}
DE2			С	С										VOUT2	f=5MHz, V=1.0V _{P-P}
DE3	Ì		с	с	Ì									VOUT2	f=5MHz, V=1.0V _{P-P}

■ TEST CIRCUIT

■ APPLICATION CIRCUIT

[CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.