

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NJM2279M

3-INPUT 2-OUTPUT VIDEO SWITCH FOR AV-SET

■ GENERAL DESCRIPTION

■ PACKAGE OUTLINE

NJM2279D

NJM2279 is 3-input, 2-output video switch with $75\Omega,$ driver circuit.

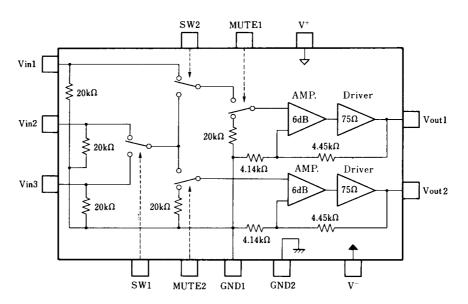
This video switch can be connected to TV monitor directly, as it has 6dB amplifier and 75Ω drivers circuit internally.

The NJM2279 has the mute function.

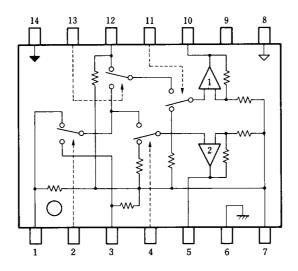
■ FEATURES

- 3 input 2 output
- Internal 6dB AMP.
- Internal 75Ω Driver Circuit
- Operating Voltage Dual (±4V to)

Single (+8V to)


- Internal 2 Output Mute Function
- Package Outline DIP14, DMP14
- Bipolar Technology

■ RECOMMENDED OPERATING CONDITION


Supply Voltage

Dual Single ±4.0V to ±7.0V +8V to +14V

■ BLOCK DIAGRAM

■ PIN CONFIGURATION

PIN FUNCTION

1. Vin3

8. V+

2. SW1

9. N.C.
 10. Vout1

3. Vin2 4. MUTE2

11. MUTE1

5. Vout2

12. Vin1 13. SW2

6. GND2 7. GND1

14. V-

New Japan Radio Co., Ltd.

■ ABSOLUTE MAXIMUM RATINGS

 $(T_a = 25^{\circ}C)$

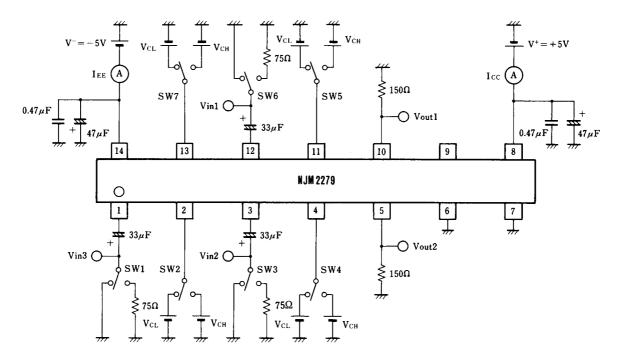
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ / <i>V</i>	±7.5	V
Power Dissipation	P _D	(DIP14) 700 (DMP14) 300	mW mW
Operating Temperature Range	T _{opr}	-20 to +75	°C
Storage Temperature Range	T _{stg}	-40 to +125	℃

■ ELECTRICAL CHARACTERISTICS

 $(V^+/V^- = \pm 5V, R_L = 150\Omega T_a = 25^{\circ}C)$

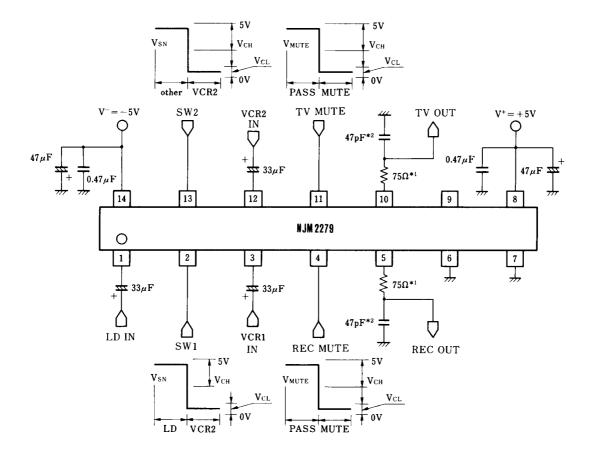
			(- , -	,,		a — O O /
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	No signal	10.0	17.3	24.6	mA
Operating Current	I _{EE}	No signal	-24.6	-17.3	-10.0	mA
Voltage Gain	G _V	$V_{IN} = 100kHz / 1.0V_{P-P}$	6.0	6.3	6.8	dB
Frequency Characteristic	Gf	5MHz / 100kHz, 1.0V _{P-P}	-1.0	0.0	+1.0	dB
Differential Gain	DG	V _{IN} = 1.0V _{P-P} , Stair wave	-	0.2	-	%
Differential Phase	DP	V _{IN} = 1.0V _{P-P} , Stair wave	-	0.2	-	deg
Offset output Voltage 1	V _{OS} 1	V _{in} 2-V _{in} 3 : no signal	-40	0	+40	mV
Offset output Voltage 2	V _{OS} 2	V _{in} 1-V _{in} 2 / V _{in} 3 : no signal	-60	0	+60	mV
Input / Output Crosstalk	CT	$V_{IN} = 4.43MHz / 1.0V_{P-P}, V_O / V_{IN}$	-	-70	-	dB
MUTE Crosstalk	CT _M	$V_{IN} = 4.43MHz / 1.0V_{P-P}, V_O / V_{IN}$	-	-60	-	dB
Switch Change Voltage	V_{CH}		2.5	-	V ⁺	V
	V_{CL}		0.0	-	1.0	V
Total Harmonic Distortion	THD	V_{IN} = 1kHz 1.25 V_{P-P}	-	0.1	-	%
Input Impedance	R _{in}		-	20	-	kΩ

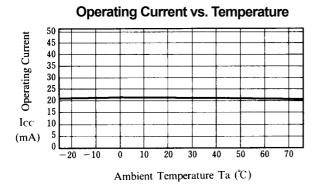
■ CONTROL SIGNAL-OUTPUT SIGNAL

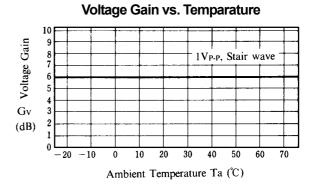

 $(L = V_{CL}, H = V_{CH}, X = LorH)$

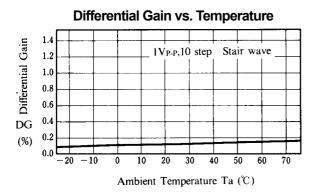
				(— · OL)	
	CONTRO	OUTPUT			
SW1 (2 pin)	SW2 (13 pin)	MUTE 1 (11 pin)	MUTE 2 (4 pin)	Vout 1 (10 pin)	Vout 2 (5 pin)
Χ	X	L	L	GND	GND
X	X	L	Н	GND	OUT PUT
Χ	X	Н	L	OUT PUT	GND
L	L	Н	Н	V _{IN} 1	V _{IN} 2
L	Н	Н	Н	V _{IN} 2	V _{IN} 2
Н	L	Н	Н	V _{IN} 1	V _{IN} 3
Н	Н	Н	Н	V _{IN} 3	V _{IN} 3

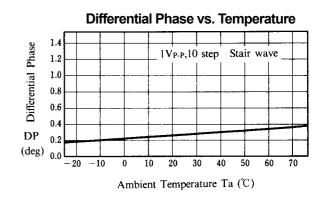
■TERMINAL FUNCTION

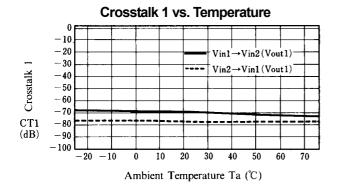

PIN No.	PIN NAME	INSIDE EQUIVALENT CIRCUIT	NOTE
1 3 12	V _{IN} 3 V _{IN} 2 V _{IN} 1	7 → V ⁺	Video signal input terminal The bias is done with $20k\Omega$ by the voltage of the terminal GND1. 1Vp-p input (0.0V = GND1)
7	GND1	1 500 N-	GND terminal When a single power supply is used, the bias is done to 1/2V+.
2 13	SW1 SW2	V⁺	Switch control terminal for input signal selection (0.0V = GND2, Uncontrolled)
4 11	MUTE2 MUTE1	2 13 20k 4	Mute control terminal The output is GND1 voltage at the mute. (0.0V = GND2, Uncontrolled)
6	GND2	5.5k \$ 0 6	GND terminal Please connect it with GND regardless of dual power supplies or single power supplies.
5 10	V _{Ouτ} 2 V _{Ouτ} 1	5 10 V-	Video signal input terminal The output signal level becomes 1VP-P at 75Ω terminal.
8	V ⁺	-	Power supply terminal
14	V	-	Power supply terminal When a single power supply is used, it becomes GND.

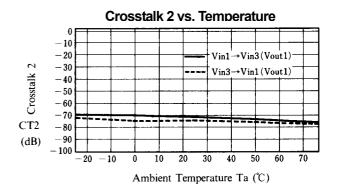

■ TEST CIRCUIT

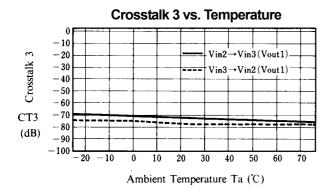


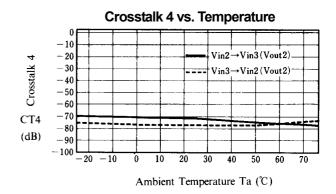

PARAMETER	SYMBOL	UNIT	INPUT TERMINAL	TEST TERMINAL	TEST CONDITION
Operating Current	Icc	mA	-	8 pin	$V_{in}1$ to 3 = 0V, SW1/2·MUTE1/2 = V_{CL}
	I _{EE}	mA	-	14 pin	$V_{in}1$ to 3 = 0V, SW1/2·MUTE1/2 = V_{CL}
Voltage Gain	G _V	dB	1, 3,12 pin	5, 10 pin	MUTE1/2 = V _{CL}
Frequency Characteristic	G _f	dB	1, 3,12 pin	5, 10 pin	MUTE1/2 = V _{CL}
Differential Gain	DG	%	1, 3,12 pin	5, 10 pin	MUTE1/2 = V _{CL}
Differential Phase	DP	deg	1, 3,12 pin	5, 10 pin	MUTE1/2 = V _{CL}
Offset output Voltage 1	V _{OS} 1	mV	1, 3,12 pin	5, 10 pin	$V_{in}1$ to 3 = 0V
Offset output Voltage 2	V _{OS} 2	mV	-	5, 10 pin	$V_{in}1$ to 3 = 0V
Input / Output Crosstalk	CT	dB	-	5, 10 pin	MUTE1/2 = V _{CL}
MUTE Crosstalk	CT _M	dB	1, 3,12 pin	5, 10 pin	MUTE1/2 = V _{CL}
Switch Change Voltage	V_{CH}	V	1, 3,12 pin	5, 10 pin	_
	V _{CL}	V	-	-	
Total Harmonic Distortion	THD	%	1, 3,12 pin	5, 10 pin	

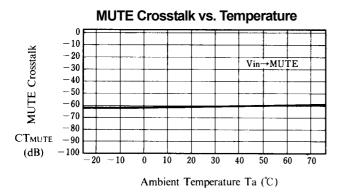

■ APPLICATION

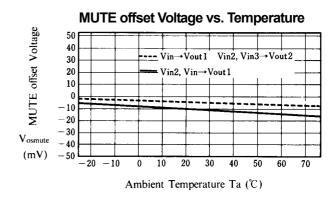


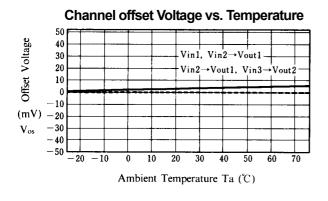


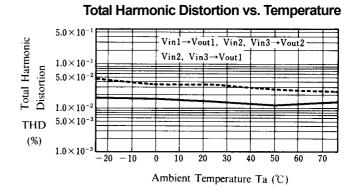


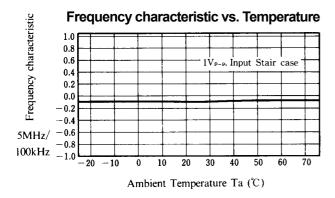


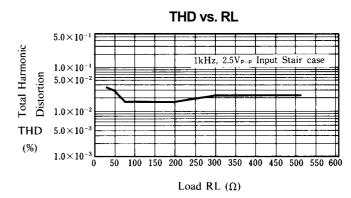


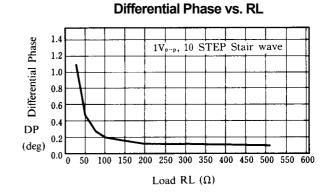


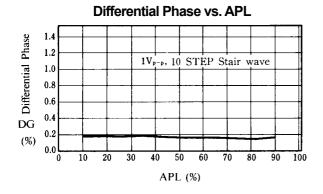


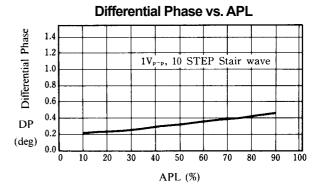


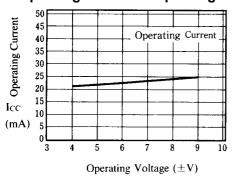


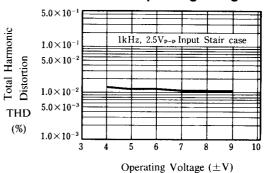


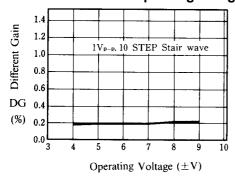


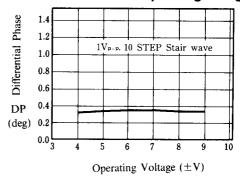


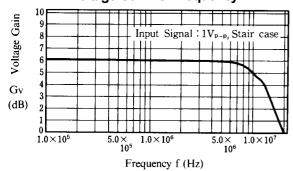


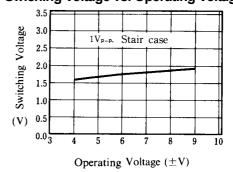


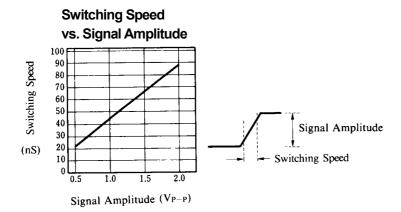



Operating Current vs. Operating Voltage


THD vs. Operating Voltage


Different Gain vs. Operating Voltage


Differential Phase vs. Operating Voltage



Voltage Gain vs. Frequency

Swiching Voltage vs. Operating Voltage

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.