imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FM IF IC FOR REMOTE KEYLESS ENTRY SYSTEM

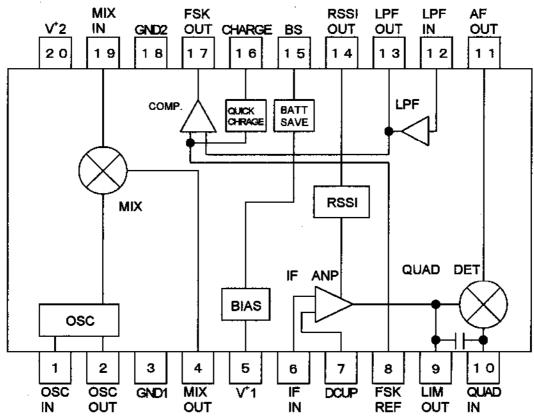
GENERAL DESCRIPTION

The **NJM2295A** is FM IF IC for the remote keyless entry system (RKE). It includes almost all functions of IF blocks, from the 1st. Mixer to the wave shaving circuit.

Exclusively designed **NJM2295A** is suited not only for the RKE, but for other FM signal receivers.

IF=10.7MHz

■ PACKAGE OUTLINE

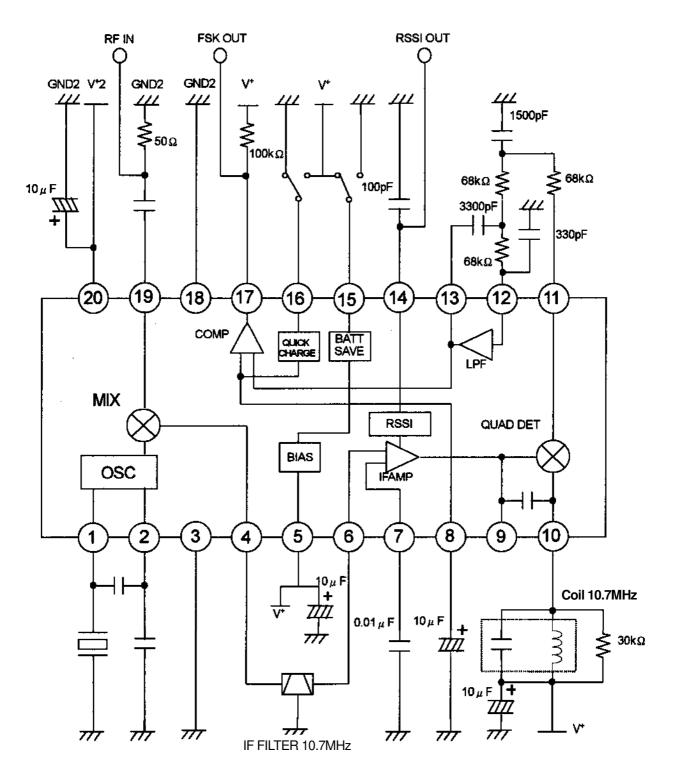


NJM2295AV

■ FEATURES

- Low Operating Current 5mA typ. at V⁺=5V
- Low Operating Voltage +2.7V to 7.0V
- Local Oscillation Frequency 50 to 350MHz
- Mixer Active Frequency to 450MHz
- IF Frequency
- 1st. Mixer Included
- RSSI Circuit Included
- FSK Wave Shaping Circuit
- Bipolar Technology
- Package Outline SSOP20

BLOCK DIAGRAM



New Japan Radio Co., Ltd.

■ ABSOLUTE MAXIMUM RATINGS (
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V^+	9.0	V	
Power Dissipation	PD	300	mW	
Operating Temperature Range	T _{opr}	-40 to +85	°C	
Storage Temperature Range	T _{stg}	-40 to +125	°C	

ELECTRICAL CHARACTER	is (V ⁺ =5.0V, T _a =25°C, fmod=1kHz, fmi	x=320MH	z, fIF=10.7	7MHz, fde	v=±10kHz)
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V ⁺		2.7	-	7.0	V
No signal Operating Current	I _{CCq}		-	5.0	7.5	mA
Battery saving Operating Current	I _{CCS}		-	-	10	μA
Mixer Gain 1	Gmix1	RL=No Connect.	13.5	18.5	22.5	dB
Mixer Gain 2	Gmix2	320MHz Gain - 450MHz Gain	-	1	3	dB
Mixer Sept Point	IP		-	103	-	dBµVEMF
Mixer Input Resistance	R _{in} M	f=320MHz	-	1	-	kΩ
Mixer Input Capacity	C _{in} M	f=320kHz	-	2	-	pF
Mixer Output Resistance	R _O M		-	330	-	Ω
If amplifier Input Resistance	R _{in} IF		-	330	-	Ω
Signal to Noise Ratio 1	S / N1	Mixer Input, V _{IN} =80dBµVEMF	-	60	-	dB
Signal to Noise Ratio 2	S / N2	IF input, V _{IN} =80dBµVEMF	-	60	-	dB
Signal to Noise Ratio 3	S / N3	IF input, V _{IN} =35dBµVEMF	-	25	-	dB
-3dB limiting sensitivity	Slim	Mixer Input	-	22	27	dBµVEMF
Demodulated Output Level	Vod	IF input, V _{IN} =60dBµVEMF	80	150	-	mVrms
AM Rejection Ratio	AMR	IF input, V _{IN} =80dBµVEMF, AM=30%	-	50	-	dB
Duty ratio of Wave Shaped Output	DR	IF input, V _{IN} =60dBµVEMF	40	50	60	%
RSSI Output Voltage 1	RSSI1	IF input, V _{IN} =20dBµVEMF	0.35	0.55	0.70	V
RSSI Output Voltage 2	RSSI2	IF input, V _{IN} =60dBµVEMF	0.7	1.00	1.3	V
RSSI Output Voltage 3	RSSI3	IF input, V _{IN} =100dBµVEMF	1.30	1.75	2.15	V
RSSI Output Resistance	RSSIR		-	48	-	kΩ
Quick Charge / discharge current	lch		35	70	120	μA
Low Level Output Voltage of FSK-OUT	VfskL	IL=100μA	-	0.1	0.4	V
High Level Leak Current of FSK-OUT Terminal	lfskH		-	-	2	μA

APPLICATION CIRCUIT

NJM2295A

■ TERMINAL FUNCTION

PIN No.	SYMBOL	FUNCTION	EQUIVALENT CIRCUIT
1	OSC IN	SAW is oscillation input terminal.	
2	OSC OUT	Oscillation Output Terminal.	
19	MIX IN	Mixer input terminal. Input impedance : Parallel resistance : 1kΩ Parallel capacity : 2pF	V ⁺ 1. 9K 1. 9K 1. 9K 1. 9K 1. 9K 1. 9K 1. 9K 1. 9K 1. 9K
4	MIX OUT	Output terminal for mixer. Output resistance is 330Ω at typical.	V+ 300 500u 4 500u 777
6	IF IN	Limiter input terminal. Input resistance is 330Ω at typical.	
7	DEC	Decoupling terminal for bias.	

- New Japan Radio Co., Ltd. -

NJM2295A

PIN No.	SYMBOL	FUNCTION	EQUIVALENT CIRCUIT
9	LIM OUT	Output terminal for limiter amplifier. Typical input impedance is 300 ohms.	
10	QUAD IN	Input terminal of a quadrature detection circuit. Connect with a ceramic discriminator.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
14	RSSI OUT	RSSI output terminal.	v^+ v^+
11	AF OUT	Demodulated siganl output.	V^+ N^+ N^+ N^-
12	LPF IN	Input terminal of a low pass filter. This terminal is biased from the AF-OUT terminal (11pin) through an external RC filter.	

TERMINAL FUNCTION

New Japan Radio Co., Ltd.

NJM2295A

TERMINAL FUNCTION

PIN No.	SYMBOL	FUNCTION	EQUIVALENT CIRCUIT
13	LPF OUT	Output terminal of a low pass filter.	
8	FSK REF	Reference input terminal of a wave shaping comparator. Connected with an external capacitor.	
17	FSK OUT	Output terminal of a wave shaping circuit. The Wave shaped signal inverted for the LPF output comes out.	
15	BS	Control terminal of a battery saving circuit. H : This circuit is ON. L : This circuit is OFF.	
16	CHARGE	Control terminal of a quick charge / discharge circuit. H : This circuit is ON. L : This circuit is OFF.	
5	V ⁺ 1	On and ;after IF supply voltage.	-
3	GND1	On and after IF ground.	-
20	V*2	Supply voltage for mixer and OSC.	-
18	GND2	Ground for mixer and OSC	-

[CAU	TION]
T 1	

[CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.