

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SINGLE-SUPPLY DUAL COMPARATOR

■ GENERAL DESCRIPTION

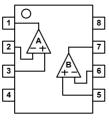
The NJM2407 is a single-supply dual comparator in small surface mount packages of MSOP8 (VSP8) and MSOP8(TVSP). The darlington PNP type input stage provides a signal detection of ground level. Further two-stage common-emitter output circuit provides a large gain, low output saturation voltage of 400mV (max.) and output sink current of 6mA (min.).

■ PACKAGE OUTLINE

NJM2407R (MSOP8(VSOP8))

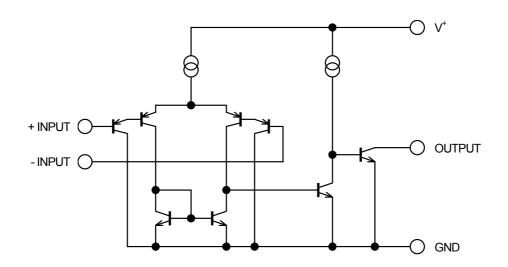
NJM2407RB1 (MSOP8(TVSP8))

■ FEATURES


Operating Voltage
 Output Sink Current
 Response Time
 V⁺= +2V to +20V
 6mA min.
 0.8µs typ.

Bipolar Technology

• Package Outline MSOP8 (VSP8)MEET JEDEC MO-187-DA


MSOP8 (TVSP8)MEET JEDEC MO-187-DA/THIN TYPE

■ PIN CONFIGURATION

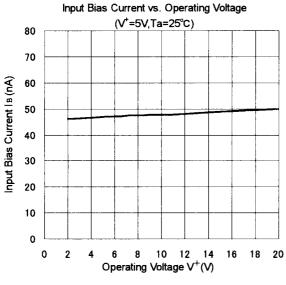
NJM2407R NJM2407RB1 PIN FUNCTION
1.A OUTPUT
2.A –INPUT
3.A +INPUT
4.GND
5.B +INPUT
6.B –INPUT
7.B OUTPUT
8.V[†]

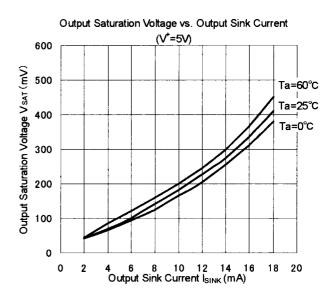
■ EQUIVALENT CIRCUIT (1/2 Shown)

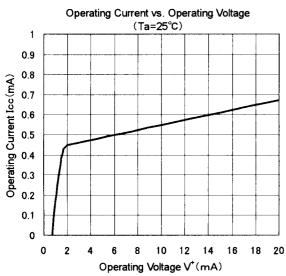
■ ABSOLUTE MAXIMUM RATINGS

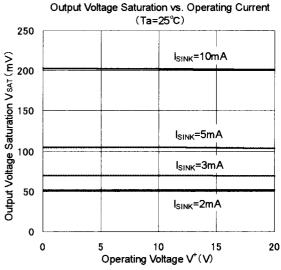
(Ta=25°C)

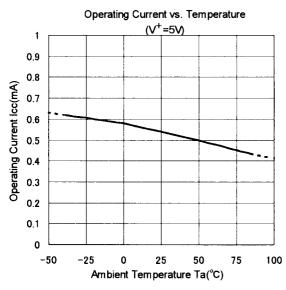
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	$V^{\dagger}(V^{\dagger}N)$	20 (±10)	V
Differential Input Voltage	V_{ID}	± 20	V
Input Voltage	V _{IN}	-0.3~+20 (note)	V
Power Dissipation	P _D	MSOP8(VSP/TVSP) 320	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-50~+125	°C

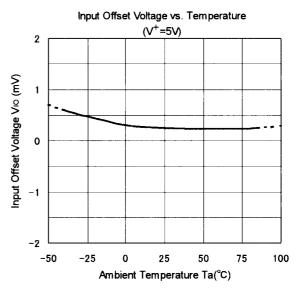

(note) When the supply voltage is less than +20V,the absolute maximum input is equal to the supply voltage.

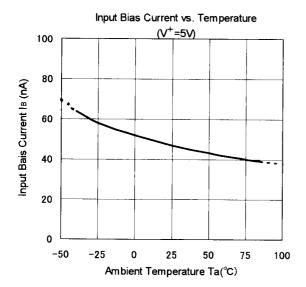

■ ELECTRICAL CHARACTERISTICS


(V⁺=5V,Ta=25°C)


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S=0\Omega, V_O=1.4V$	-	2	7	mV
Input Offset Current	I _{IO}		-	5	50	nA
Input Bias Current	I_{B}		-	25	250	nA
Large Signal Voltage Gain	A_{V}	R _L =15kΩ	-	106	-	dB
Input Common Mode Voltage Range	V_{ICM}		0~3.5	-	-	V
Response Time	t_{R}	$R_L=5.1k\Omega$	-	0.8	-	μs
Output Sink Current	I _{SINK}	$V_{IN}^{-}=1V, V_{IN}^{+}=0V, V_{O}=1.5V$	6	16	-	mA
Output Saturation Voltage	V_{SAT}	$V_{IN}^-=1V,V_{IN}^+=0V,I_{SINK}=3mA$	-	200	400	mV
Output Leakage Current	I _{LEAK}	$V_{IN}^{-}=0V, V_{IN}^{+}=1V, V_{O}=5V$	-	-	1.0	μA
Operating Current	I _{CC}	R _L =∞	-	0.4	1	mA


■ TYPICAL CHARACTERISTICS





■ TYPICAL CHARACTERISTICS

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.