# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



### 3-INPUT / 2-INPUT VIDEO SWITCH

#### ■ GENERAL DESCRIPTION

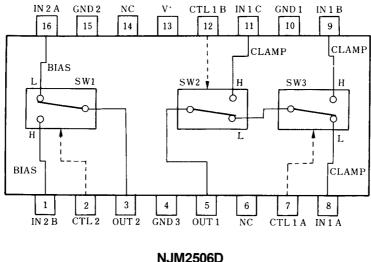
The **NJM2506** is video switch for video and audio signal. It contains 3 input-1 output and 2 input-1 output video switch. 3 input-1 output switch has clamp function and so is applied to fixed DC level of video signal. Its operating voltage is 4.75 to 13V and bahdwidth is 10MHz. Crosstalk is 75dB (at f = 4.43MHz)

 $V^+$ 

#### ■ FEATURES

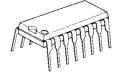
- Wide Operating Supply Range (+4.75V to +13V)
- 3 Input-1 Output and 2 Input-1 Output
- Internal Clamp Function
- Crosstalk 75dB (at 4.43MHz)
- Wide Frequency Range 10MHz (2V<sub>P-P</sub> Input)
- Package Outline DIP16, DMP16
- Bipolar Technology

#### ■ RECOMMENDED OPERATING CONDITION


Operating Voltage

4.75V to 13.0V

#### ■ APPLICATION


• VCR, Video Camera, AV-TV, Video Disk Player.

#### BLOCK DIAGRAM



NJM2506M

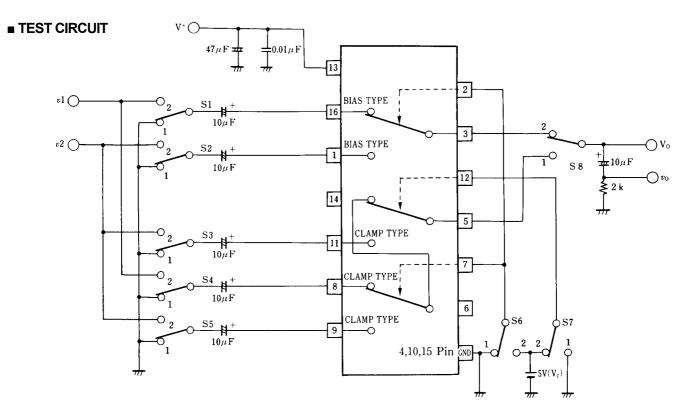
#### PACKAGE OUTLINE





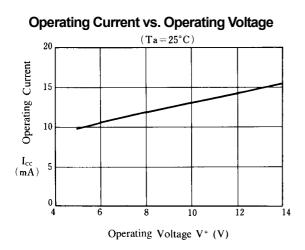
NJM2506D

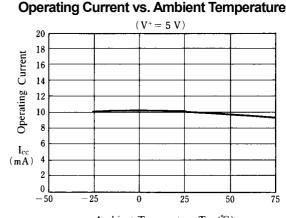
NJM2506M


| ABSOLUTE MAXIMUM RATINGS    |                  |                            | $(T_a = 25^{\circ}C)$ |
|-----------------------------|------------------|----------------------------|-----------------------|
| PARAMETER                   | SYMBOL           | RATINGS                    | UNIT                  |
| Supply Voltage              | V <sup>+</sup>   | 14                         | V                     |
| Power Dissipation           | PD               | (DIP16) 700<br>(DMP16) 350 | mW<br>mW              |
| Operating Temperature Range | T <sub>opr</sub> | -40 to +85                 | °C                    |
| Storage Temperature Range   | T <sub>stg</sub> | -40 to +125                | °C                    |

#### ELECTRICAL CHARACTERISTICS

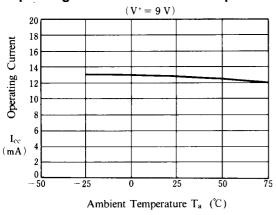
 $(V^+ = 5V, T_a = 25^{\circ}C)$ TEST CONDITION PARAMETER SYMBOL MIN. TYP. MAX. UNIT Operating Current (1)  $V^+ = 5V$  (Note1)  $I_{CC1}$ 6.7 9.7 12.7 mΑ  $V^+ = 9V$  (Note1) 16.0 **Operating Current (2)** Icc2 8.6 12.3 mΑ Voltage Gain Gv  $V_{I} = 2V_{P-P} / 100 khz, V_{O} / V_{I}$ -0.6 -0.1 +0.4 dB  $V_1 = 2V_{P-P}, V_0 (10MHz / 100kHz)$ Frequency Response Gf -1.0 0 +1.0 dB **Differential Gain** DG  $V_{I} = 2V_{P-P}$ , Staircase Signal 0.3 % DP **Differential Phasa** VI = 2VP-P, Staircase Signal 0.3 deg V<sub>OS1</sub> Output offset Voltage (1) (Note2) -10 0 +10 mV Output offset Voltage (2) V<sub>OS2</sub> (Note2) -30 0 +30 mV Crosstalk СТ dB  $V_{I} = 2V_{P-P}, 4.43MHz, V_{O} / V_{I}$ \_ -75 \_ All inside SW : ON Switch Change Voltage  $V_{CH}$ -2.5 V Switch Change Voltage  $V_{CL}$ All inside SW : OFF 1.0 V


(Note1): S1 = S2 = S3 = S4 = S5 = S6 = S7 = 1

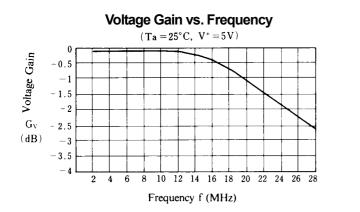

(Note2) : Output DC Voltage Difference is tested on S6 =  $1 \rightarrow 2$ , S1 = S2 = S3 = S4 = S5 = 1, S8 = 2 and S7 = 1 (Note3): Output DC Voltage Difference is tested on S6 =  $1 \rightarrow 2$ , S7 = 1 (or S6 = 1, S7 =  $1 \rightarrow 2$ .), S1 = S2 = S3 = S4 = S5 = 1 and S8 = 1

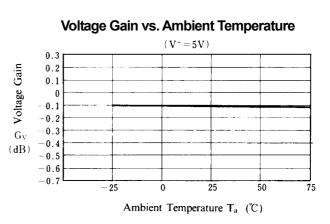


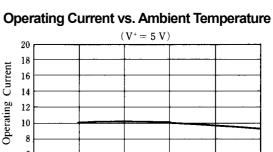
#### ■ PIN FUNCTION

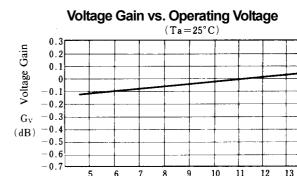

| PIN No.       | PIN NAME                               | DC VOLTAGE | INSIDE EQUIVALENT CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|----------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16<br>1       | IN 2 A<br>IN 2 B<br>[Input]            | 2.5V       | 500<br>15k<br>2.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8<br>9<br>11  | IN 1A<br>IN 1B<br>IN 1C<br>[Input]     | 1.5V       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7<br>12<br>2  | CTL 1A<br>CTL 1B<br>CTL 2<br>[Control] |            | 2.3V<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7. |
| 5             | OUT1<br>[Output]                       | 1.8V       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3             | OUT2<br>[Output]                       | 0.8V       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13            | V <sup>+</sup>                         | 5V         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15<br>4<br>10 | GND 1<br>GND 2<br>GND 3                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

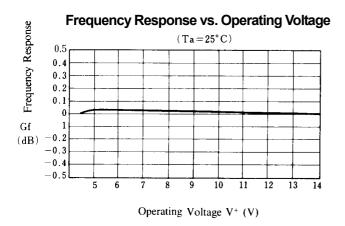


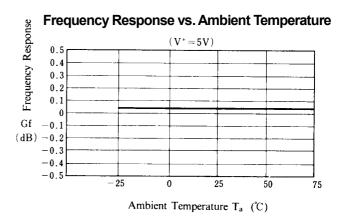


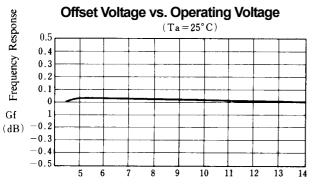


Ambient Temperature  $T_a$  (°C)

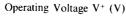

**Operating Current vs. Ambient Temperature** 

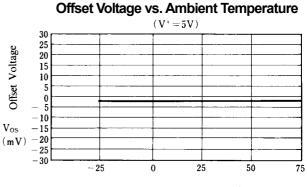




 $(Ta = 25^{\circ}C)$ 0.3 Voltage Gain 0.2 0.1 0 -0.1-0.2  $G_{\rm v}$ -0.3-0.4-0.5 -0.6-0.75 6 7 8 9 10 11 12 13 14 Operating Voltage V+ (V)

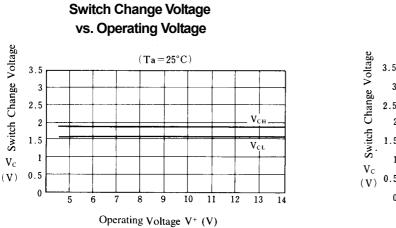


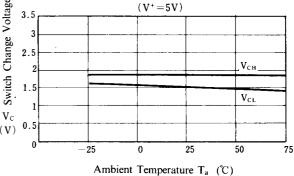



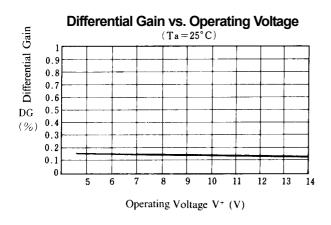



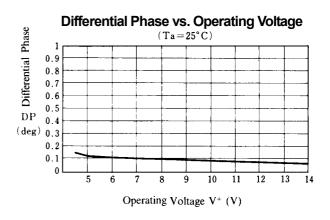


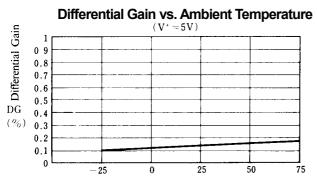





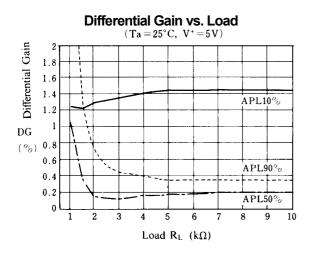



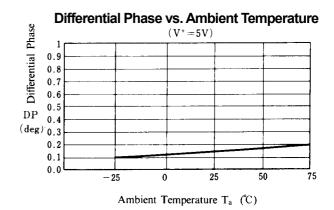



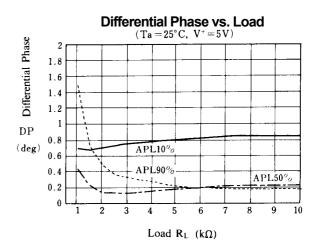


Ambient Temperature  $T_a$  (°C)



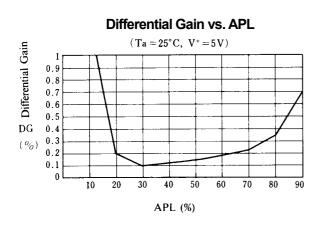

Switch Change Voltage vs. Ambient Temperature

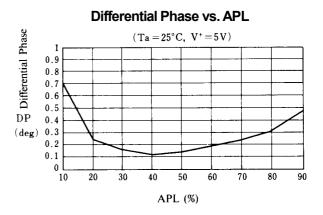


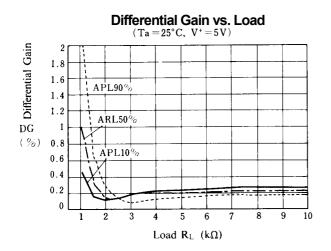



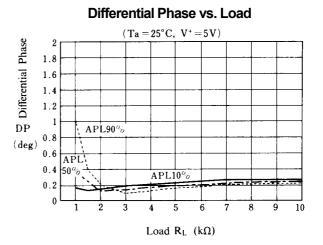



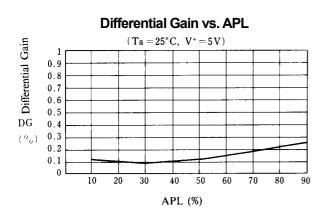




Ambient Temperature  $T_a$  (°C)



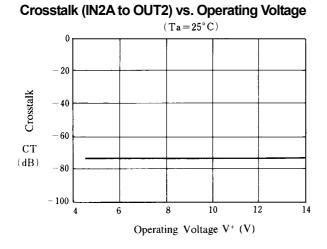



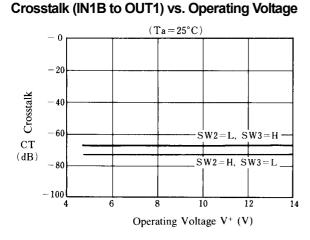



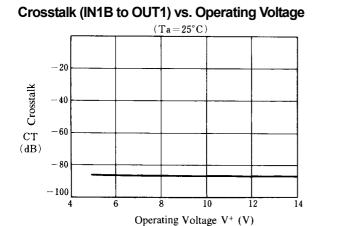



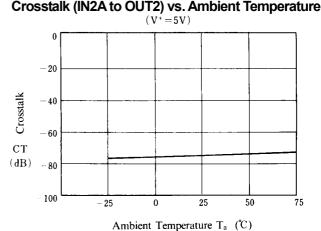




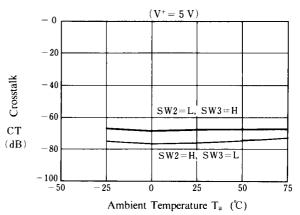



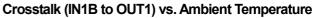



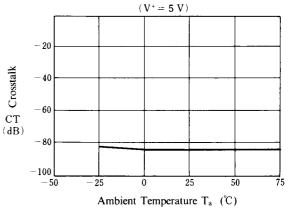


**Differential Phase vs. APL** Differential Phase  $(Ta = 25^{\circ}C, V^{+} = 5V)$ 1 0.9 0.8 0.7 0.6 0.5 DG 0.4 0.3 (deg) 0.2 0.1 0 10 20 30 40 50 60 70 80 90 APL (%)

New Japan Radio Co., Ltd.



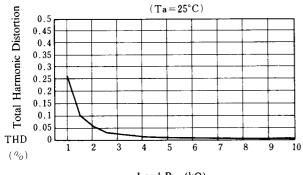



#### Crosstalk (IN2A to OUT2) vs. Ambient Temperature

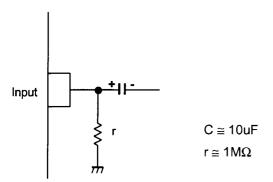
#### Crosstalk (IN1B to OUT1) vs. Ambient Temperature



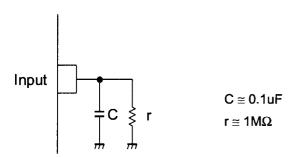




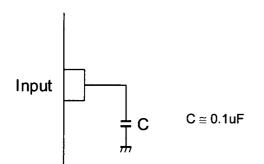

New Japan Radio Co., Ltd.






#### ■ APPLICATION


This IC requires  $1M\Omega$  resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.



This IC requires  $0.1\mu$ F capacitor between INPUT and GND,  $1M\Omega$  resistance between INPUT and GND for clamp type input at mute mode.



This IC requires 0.1µF capacitor between INPUT and GND for bias type input at mute mode.



| [CAUTION]                                   |    |
|---------------------------------------------|----|
| The specifications on this databook are onl | İv |

given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.