mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LOW VOLTAGE DC MOTOR CONTROLLER

(1.8V to 8V)

DIP8, DMP8

■ GENERAL DESCRIPTION

The **NJM2606/06A** are integrated circuits with wide operating supply voltage range for DC motor speed control. Especially, the **NJM2606A** is suited for the applications requiring low staturation output voltage.

■ FEATURES

- Operating Voltage
- Internal Low Saturation Voltage Output Transistor
- Package Outline
- Bipolar Technology

PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM2606D NJM2606AD

NJM2606M NJM2606AM

BLOCK DIAGRAM

NJM2606 / 2606A

■ ABSOLUTE MAXIMUM RAT	(T _a =25°C)		
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	10	V
Peak-to-peak Output Current	I _{OP}	700	mA
Power Dissipation	PD	(DIP) 500	mW
		(DMP8) 300	mW
Operating Temperature Range	T _{opr}	-20 to 75	°C
Storage Temperature Range	T _{stg}	-40 to 125	C°

(note)At SW ON. (3 sec. at motor locked or 100msec at duty factor less than 0.1%)

■ ELECTRICAL CHARACTERISTICS

 $(T_a=25^{\circ}C, V^{+}=3V, I_{M}=100mA)$

(·a; · ··; ·w)						101
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}		-	2.4	6.0	mA
Output Saturation Voltage						
NJM2606	VOSAT		-	0.18	0.3	V
NJM2606A	V _{OSAT}		-	0.13	0.18	V
Reference Voltage	V _{REF}		0.18	0.20	0.22	V
vs. Operating Voltage	ΔV_{RSV}	V ⁺ =1.8V to 8.0V	-	0.7	8.0	mV
vs. Output Current	ΔV_{ROC}	I _M =20mA to 200mA	-	2.7	9.0	mV
vs. Ambient Temperature	ΔV_{RT}	T _a = -20°C to +75°C	-	0.04	-	mV / °C
Current Ratio	К	I _M =50mA to 150mA	45	50	55	
vs. Operating Voltage	ΔK _{SV}	V ⁺ =1.8V to 8.0V I _M =50mA to 150mA	-	0.6	3.0	
vs. Output Current	ΔΚος	I _M =(20 to 50)mA to (170 to 200)mA	-	1.0	4.0	
vs. Ambient Temperature	ΔΚτς	T _a = -20°C to +75°C I _M =50mA to 150mA	-	1.0	-	1 / °C

TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage

■ TYPICAL CHARACTERISTICS

Rotation vs. Torque $(V^+=3V, Ta=25^{\circ}C)$ 2, 500 2,000 Rotation 1, 500 8 V 5 6 n 1,000 (rpm) 500 0 0 30 40 10 20 Torque (g-cm)

TYPICAL APPLICATION

The voltage applied at the motor is set as V_M , which brings the following formula.

$$V_{M} = (R_{1} + R_{2} + R_{3}) I_{ref} + R_{1} \cdot \frac{I_{M} + I_{ref}}{K}$$

Now that, $I_{ref} = V_{ref} / R_{2}$ so that, $(I_{ref} \rightleftharpoons 100 \mu A \text{ setting is appropriate})$
 $V_{M} = \frac{V_{ref}}{R_{2}} (R_{1} + \frac{R_{1}}{K} + R_{2} + R_{3}) + \frac{R_{1}}{K} I_{M} \Lambda \Lambda$ (1)

On the other hand, the voltage applied at the motor itself will be as in the following.

 $V_{M} = E_{O} + R_{M} \cdot I_{M} \Lambda \Lambda (2)$

Through (1), (2), and then leading to stabilize the control system.

$$R_{M} \cdot I_{M} > \frac{R_{1}}{K} \cdot I_{M}$$

 $\therefore \mathsf{R}_1 < \mathsf{K} \cdot \mathsf{R}_{\mathsf{M}} \Lambda \Lambda (3)$

Taking in consideration of deviations, $R_{1(MAX)} < K_{(MIN)} \cdot R_{M(MIN)}$ with the condition.

Items required checking in regard to the temperature coefficient

IC items

- 1. Reference voltage : Temperature coefficient of V_{ref}.
- 2. Current Ratio : Temperature coefficient of K *1 External component items
- Temperature coefficient of R₁, R₂ and R₃
 The relation among these 3 parts takes the very important roll.
- 4. Temperature coefficient of motor internal resistance
- 5. Temperature coefficient of motor generative voltage
- 6. Temperature coefficient ratio of R_1 and R_M Count up from 3.4.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.