

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SINGLE-SUPPLY QUAD OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM3403A is high performance ground sensing quad operational amplifier featuring the high slew rate and no crossover distortion.

The NJM3403A is improved version of the NJM2902.

■ FEATURES

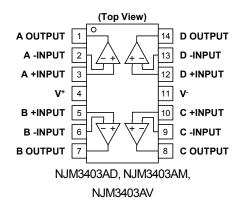
Single Supply

Operating Voltage (+4V~+36V)
 Low Operating Current (3mA typ.)
 Slew Rate (1.2V/µs typ.)

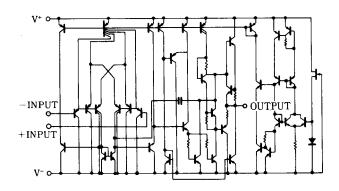
• Package Outline DIP14,DMP14,SSOP14

Bipolar Technology

■ PACKAGE OUTLINE


NJM3403AD

NJM3403AM



NJM3403AV

■ PIN CONFIGURATION

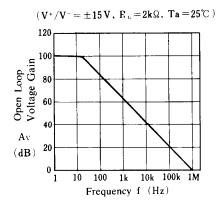
■ EQUIVALENT CIRCUIT (1/4 Shown)

NJM3403A

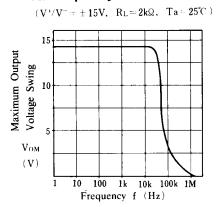
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

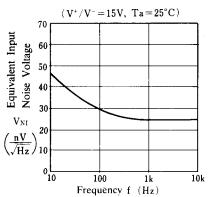
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ (V ⁺ /√)	36 (or ±18)	V
Differential Input Voltage	V_{ID}	36	V
Input Voltage	V _{IC}	-0.3~+36	V
Power Dissipation	P _D	(DIP14) 500 (DMP14) 300 (SSOP14) 300	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

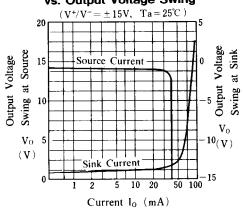

■ ELECTRICAL CHARACTERISTICS

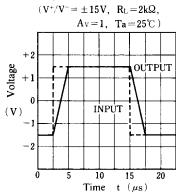
(Ta=25°C,V⁺/V⁻=±15V)

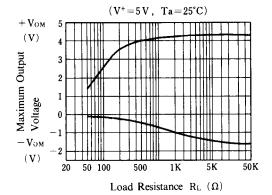

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S=0\Omega$	-	2	5	mV
Input Offset Current	I _{IO}		-	5	50	nA
Input Bias Current	I_{B}		-	70	200	nA
Large Signal Voltage Gain	A_{V}	R _L >2kΩ	88	100	-	dB
Maximum Output Voltage Swing	V_{OM}	R _L =2kΩ	± 13	± 14	-	V
Input Common Mode Voltage Range	V_{ICM}		-15~+13	-	-	V
Common Mode Rejection Ratio	CMR	DC	70	90	-	dB
Supply Voltage Rejection Ratio	SVR		80	94	-	dB
Output Source Current	I _{SOURCE}	$V_{IN}^{+}=1V, V_{IN}^{-}=0V$	20	30	-	mA
Output Sink Current	I _{SINK}	$V_{IN}^{+}=0V, V_{IN}^{-}=1V$	10	20	-	mA
Channel Separation	CS	f=1k~20kHz Input Referred	-	120	-	dB
Operating Current	Icc	R _L =∞	-	3	5	mA
Slew Rate	SR		-	1.2	-	V/µs
Unity Gain Bandwidth	f_{T}		-	1.2	-	MHz
Total Harmonic Distortion	THD	f=20kHz,V _O =10V _{PP}	-	1	-	%

■ TYPICAL CHARACTERISTICS

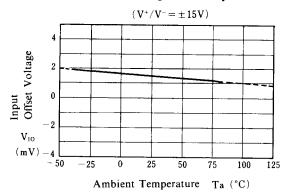

Open Loop Voltage Gain vs. Frequency


Maximum Output Voltage Swing vs. Frequency

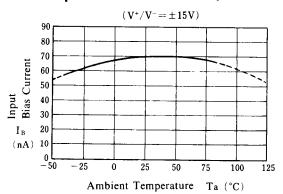

Equivalent Input Noise Voltage vs. Frequency


Output Source Current Output Sink Current vs. Output Voltage Swing

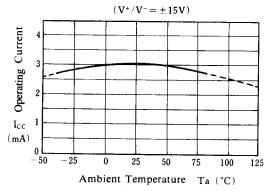
Square Wave Respons

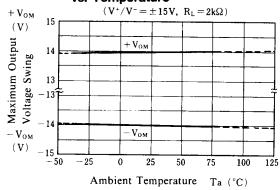


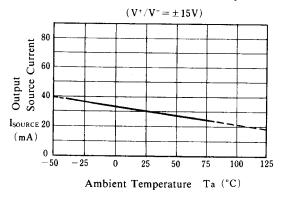
Maximum Output Voltage vs. Load Resistance

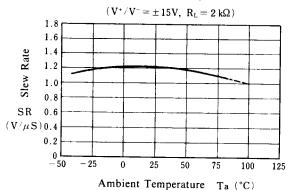


■ TYPICAL CHARACTERISTICS

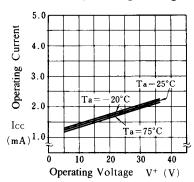

Input offset Voltage vs. Temperature


Input Bias Current vs. Temperature

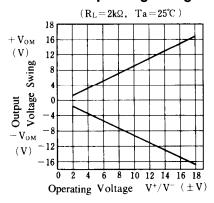

Operating Current vs. Temperature


Maximum Output Voltage Swing vs. Temperature

Output Source Current vs. Temperature

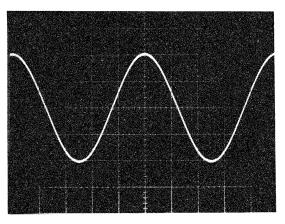


Slew Rate vs. Temperatute

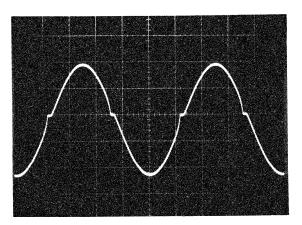


■ TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage



Output Voltage Swing vs. Operating Voltage



■ Crossover Distortion

Photos (1) and (2) show the output waveforms of NJM3403A and operational amplifier having crossover distortion. The NJM3403A eliminates the crossover distortion through the A,B class output stage as shown in the photo. NJM3403A IC has realized a wide band and a high slew rate in addition to the low distortion.

(1) NJM3403A Output Waveform

(2) Crossover Distortion Example

f = IkHz, $R_L = 2k\Omega$, Vertical Axis: 2V/div

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either instakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.