imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SINGLE-SUPPLY DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

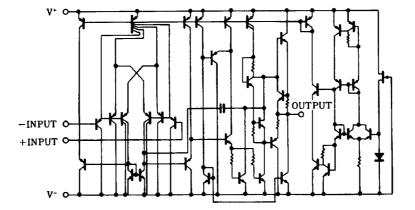
The NJM3404A is high performance single supply dual operational amplifier. The NJM3404A is a half type of the NJM3403A, quad operational amplifier.

The NJM3404A is improved version of the NJM2904 on slew rate & cross-over distortion.

■ FEATURES

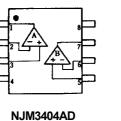
- Single Supply
- Operating Voltage
- Low Operating Current
- Slew Rate
- Package Outline
- Bipolar Technology

PIN CONFIGURATION

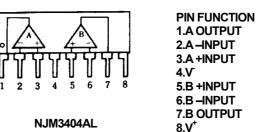

(+4V~+36V) (2.0mA typ.) (1.2V/µs typ.) DIP8, DMP8, SIP8, SSOP8

NJM3404AD

PACKAGE OUTLINE


NJM3404AL

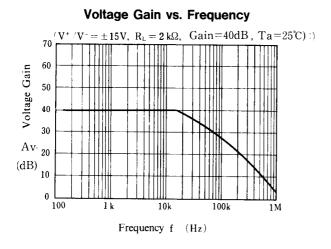
NJM3404AM

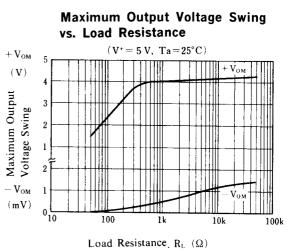


NJM3404AM NJM3404AV

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

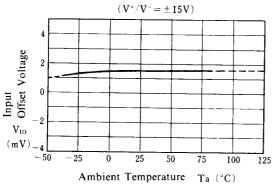

			(Ta=25°C)
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ (V ⁺ /V ⁻)	36V (or ±18)	V
Differential Input Voltage	VID	36	V
Input Voltage	VIC	-0.3~36	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300 (SSOP8) 250 (SIP8) 800	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

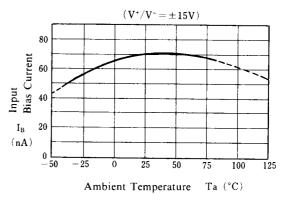

■ ELECTRICAL CHARACTERISTICS

				(1a-250, 0.00)		
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _s =0Ω	-	2	5	mV
Input Offset Current	lio		-	5	50	nA
Input Bias Current	I _B		-	70	200	nA
Large Signal Voltage Gain	Av	R _L >2kΩ	88	100	-	dB
Maximum Output Voltage Swing	V _{OM}	R _L =2kΩ	± 13	± 14	-	V
Input Common Mode Voltage Range	VICM		-15~+13	-	-	V
Common Mode Rejection Ratio	CMR	DC	70	90	-	dB
Supply Voltage Rejection Ratio	SVR		80	94	-	dB
Operating Current	lcc	R _L =∞	-	2.0	3.5	mA
Output Source Current	ISOURCE	V _{IN} ⁺ =1V,V _{IN} ⁻ =0V	20	30	-	mA
Output Sink Current	I _{SINK}	V _{IN} ⁺ =0V,V _{IN} ⁻ =1V	10	20	-	mA
Slew Rate	SR		-	1.2	-	V/µs
Unity Gain Bandwidth	f⊤	-	-	1.2	-	MHz

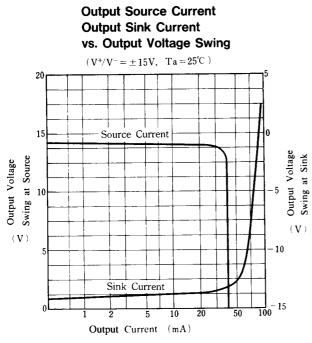
(Ta=25°C,V⁺/V⁻=±15V)

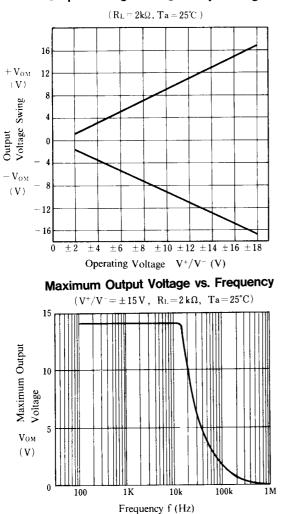
TYPICAL CHARACTERISTICS

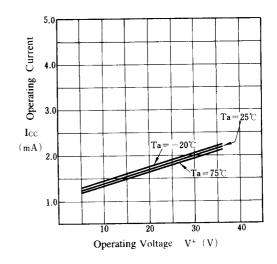


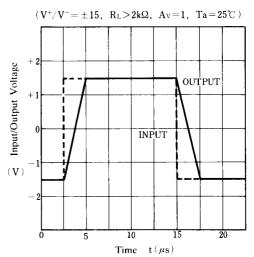

Operating Current vs. Temperature $(V^+/V^- = \pm 15V, R_L = \infty)$ integrading 2.0 integrad

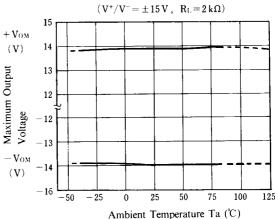
Output Source Current vs. Temperature $(V^+/V^- = \pm 15V)$ 90 80 Source Current 70 60 Output 50 40 30 I_{SOURCE} 20 (mA) 10 0 L - 50 25 0 25 50 75 100 125 Ambient Temperature Ta (°C)

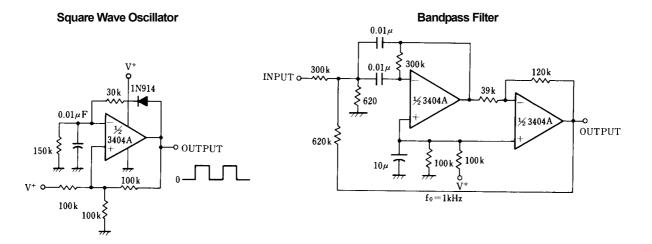

Input Offset Voltage vs. Temperature


Input Bias Current vs. Temperature


■ TYPICAL CHARACTERISTICS


Output Voltage Swing vs. Operating Voltage




Pulse Response

Maximum Output Voltage vs. Temperature

TYPICAL APPLICATIONS

[CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.