imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

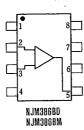
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

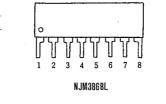
LOW VOLTAGE AUDIO POWER AMPLIFIER

GENERAL DESCRIPTION

The NJM386B is wider operating voltage and higher output power version of NJM386. The maximum operating voltage is 18V, and the maximum output power is up to 1W.

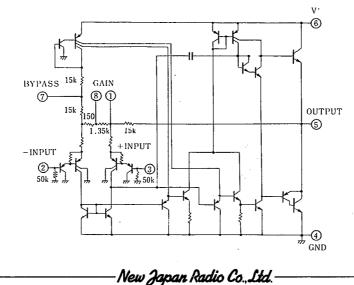
DIP8, SIP8, DMP8


■ FEATURES


- Operating Voltage $(4V \sim 18V)$ •
 - Minimum External Components
- Low Operating Current (5mA) $(20 \sim 200)$
- Voltage Gain
- Single Supply Operation .
- Self-centering of Output Offset Voltage .
- Package Outline •
- . **Bipolar Technology**

APPLICATIONS

- AM-FM radio amplifiers .
- Portable tape player amplifiers .
- Intercoms
- TV sound systems
- Line drivers
- Ultra-sonic Drivers
- Small servo drivers •
- Power converters


PIN CONFIGURATION

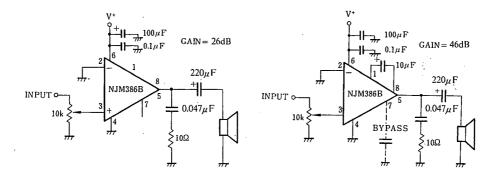
PIN FUNCTION 1. GAIN -INPUT 2. 3. +INPUT 4. GND 5. OUTPUT 6. V* 7. BY PASS 8. GAIN

EQUIVALENT CIRCUIT

PACKAGE OUTLINE

NJM386BD

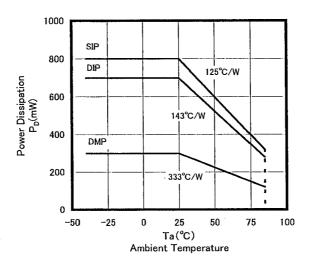
NJM386B


(Ta=25℃)	ABSOLUTE MAXIMUM RATINGS		
UNIT	RATINGS	SYMBOL	PARAMETER
v	22	V⁺	Supply Voltage
mW	(DIP-8) 700	Po	Power Dissipation
mW	(SIP-8) 800		
mW	(DMP-8) 300		
v	±0.4	VIN	Input Voltage Range
C	-40~+85	Topr	Operating Temperature Range
C	-40~+125	Tstg	Storage Temperature Range

ELECTRICAL CHARACTERISTICS

PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Operating Voltage V+ 4 18 v -----Operating Current V+=6V, V_{IN}=0 5 8 Icc _ mΑ Output Power $V^{+}=6V, R_{L}=8\Omega, THD=10\%$ 250 mW 325 Po ____ $V^{+}=9V$, $R_{L}=8\Omega$, THD=10% (note 2) 500 850 ____ m₩ ____ $V^+=16V, R_L=32\Omega, THD=10\%$ (note 1) 700 1000 mW Voltage Gain Vs=6V, f=1kHz 28 Aγ 24 26 dB 10µF from Pin 1 to 8 43 46 49 dB Bandwidth BW V+=6V, Pins 1 and 8 Open 600 kHz Total Harmonic Distortion THD $V^{+}=6V, R_{L}=8\Omega, P_{OUT}=125mV$ 0.1 % f=1kHz, Pins 1 and 8 Open Power supply Rejection Ratio SVR V⁺=6V, f=1kHz, $C_{BYPASS}=10\mu F$ 50 dB Pins 1 and 8 Open Input Resistance R_{IN} 50 kΩ ____ Input Bias Current lβ V+=6V, Pins 2 and 3 Open 100 nΑ

(note 1) NJM386BM: At on Board (note 2) NJM386BS: At on Board

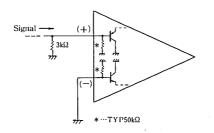

TYPICAL APPLICATION

(Ta=25℃)

5

POWER DISSIPATION VS. AMBIENT TEMPERATURE

NOTICE WHEN APPLICATION


• Prevention of Oscillation

It is recommended to insert capacitors at around the supply source and the GND pins with the value of 0.1μ F and more than 100μ F which are featuring higher frequency efficiency.

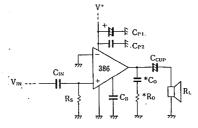
When the speaker load condition, it is recommendable to insert the resisitor of 10Ω and the capacitor of 0.047μ F between the output and the GND pins.

How to use the Input Resistor (TYP. 50kΩ)

The input resistors have much deviation in value generally, so that it is recommended not to use them as the constant of the circuit. The countermeasure to be recommended is to apply the resistor of higher in value, which is so higher to be able to ignore the input deviation $(3k\Omega \text{ approximately})$ in parallel application.

Maintenance of Output Offset Voltage

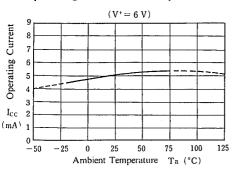
By making connection of both input pins with low value (below $10k\Omega$ approximately) to GND, the output offset voltage is automatically set in the medium range value of the supply source. However, the DC Gain of NJM386 is approximately at 20 times in value, so that when keeping one side input pin open, and the other side to GND on DC condition. The voltage drop caused by input resistor × input bias current, that is, (input resistor × input bias current)× 20 times voltage is to be sheared, which in the result, no distortion output Oscillation range shall be decreeased.


In regard to dealing with the input pin, it is recommendable to put the input pin into the GND at first, and the other side of signal input pin, to be connected into GND with the resistor of less than about $10k\Omega$ on DC condition.

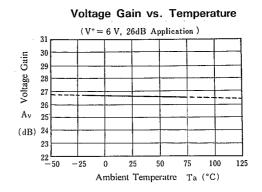
New Japan Radio Co., Ltd.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENED VALUE	REMARKS
Rs	Current like noise reduction V _{OQ} stabilization	Below 10kΩ	The noise becomes high when the input pin opend.
C _{IN}	V _{OQ} stabilization	lμF	It is not required in case when there is no DC offset in the input signal.
Cpi	V ⁺ stabilization	$\cong C_{cup}$	It can be decreased in value when the output impedance source is low.
CP2	Oscitallation prevention	0.1µF	Insert near around the supply source and GND pins.
Cv	Ripple rejection to Voby way of V ⁺	47μF	It is not required when the V* is stabilized.
*Co	Oscillation preventon	0.047µF	To be decided in value according to load condition.
*Ro	Oscillation prevention	10Ω	To be decided in value according to load condition.
Ссир	Output DC decoupling	470μF when	Low band cutoff frequency (f_L) shall be decided by C _{CUP} R _L
		$R_L = 4\Omega$	When C_{CUP} is less in value, f_L is to be increased.
		220μ F when	
		$R_L = 8\Omega$	
		1	

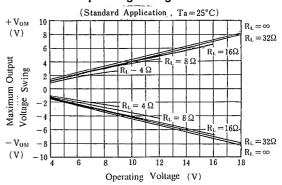
• The Application Purpose and Recommended Value of the External Parts.

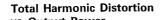


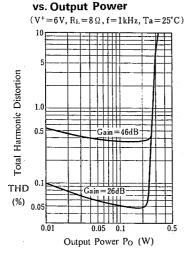
-New Japan Radio Co.,Ltd.-


5-13

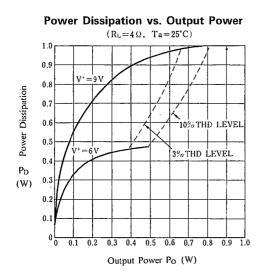
NJM386B


TYPICAL CHARACTERISTICS

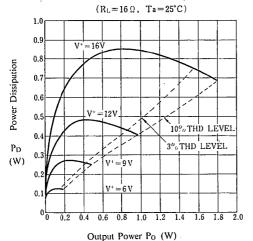


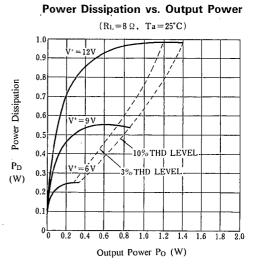

Operating Current vs. Temperature

Maximum Output Voltage Swing vs. Operating Voltage

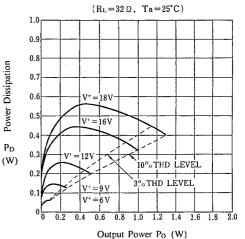


-New Japan Radio Co., Ltd.


5-14


5

TYPICAL CHARACTERISTICS



Power Dissipation vs. Output Power

Power Dissipation vs. Output Power

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.