

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

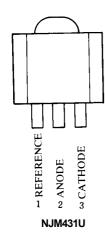
ADJUSTABLE PRECISION SHUNT REGULATOR

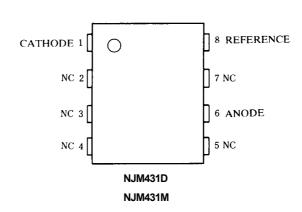
■ GENERAL DESCRIPTION

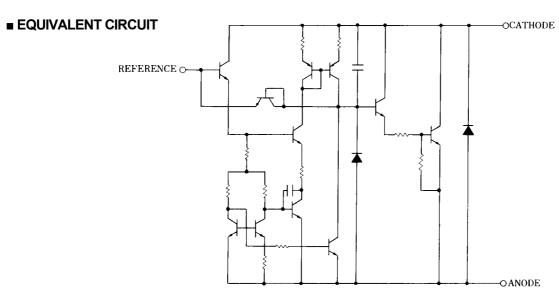
The NJM431 is a 3 terminal adjustable shunt regulator. The output voltage may be set to any value between V_{REF} (about 2.5V) and 36V by two resistors. Output circuitry shows a sharp turn-on characteristics. Applications include shunt regulators, series regulators for small power and isolation regulators with photo couplers.

■ PACKAGE OUTLINE

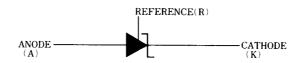
NJM431D (DIP8)


NJM431M (DMP8)


■ FEATURES


- Operating Voltage (V_{KA} = V_{REF} to 36V)
- Fast Turn-On Response
- Cathode Current (1mA to 100mA)
- Low Dynamic Output Impedance (0.2Ωtyp.)
- Load Regulation typically (0.1%)
- Package Outline DIP8, DMP8, SOT-89
- Bipolar Technology

NJM431U (SOT-89)


■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

 $(T_a=25^{\circ}C)$

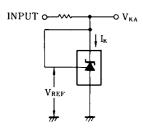
PARAMETER	SYMBOL	RATINGS	UNIT	
Cathode Voltage (note)	VKA	37	V	
Continuous Cathode Current	I _K	-100 to 150	mA	
Reference Input Current	I _{REF}	-0.05 to 10	mA	
Power Dissipation	P _D	(DIP8) 700 (DMP8) 300 (SOT89) 350	mW mW mW	
Operating Temperature	T _{opr}	-40 to +85	℃	
Storage Temperature Range	T _{stg}	-40 to +125	°C	

(note) Unless specified, all voltage value are with respect to the anode terminal.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Cathode Voltage	VKA	V_{REF}	-	36	V
Cathode Current	Iĸ	1	1	100	mA

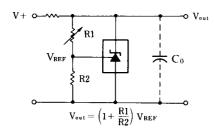
■ ELECTRICAL CHARACTERISTICS (T_a=25°C)

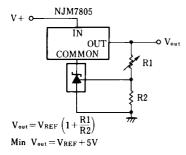

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Reference Voltage	V_{REF}	$V_{KA} = V_{REF}$, $I_K = 10$ mA (note 1)		2440	2495	2550	mV
Reference Voltage Change (Full Oper. Temp. Range)	V _{REF} (dev)	$V_{KA} = V_{REF}$, $I_K = 10$ mA (note 1) Ta = -20°C to +85 °C		-	8	17	mV
Reference Voltage Change	ΔV _{REF}	I _K = 10mA (note 2)	ΔV _{KA} = 10V - V _{REF}	-	-1.4	-2.7	mV/V
vs. Cathode Voltage Change	ΔV _{KA}	IK – TOTTA (Hote 2)	ΔV _{KA} = 36V - 10V	-	-1	-2	mV/V
Reference Input Current	I _{REF}	I_K = 10mA, R1 = 10kΩ, R2 = ∞ (note 2)		-	2	4	μΑ
Reference Input Current Change (Full Oper. Temp. Range)	I _{REF} (dev)	I_K = 10mA, R1 = 10kΩ, R2 = ∞ (note 2) Ta = -20 $^{\circ}$ C to +85 $^{\circ}$ C		-	04	1.2	μA
Minimum Input Current	I _{MIN}	V _{KA} = V _{REF} (note 1)		-	0.4	1.0	mA
Cathode Current (Off Cond.)	I _{OFF}	V _{KA} = 36V, V _{REF} = 0 (note 3)		-	0.1	1.0	μA
Dynamic Impedance	Z _{KA}	$V_{KA} = V_{REF}$, $I_K = 1$ mA to 100mA, $f \le 1$ kHz (note 1)		-	0.2	0.5	Ω

(note 1) TEST CIRCUIT (Fig. 1)

(note 2) TEST CIRCUIT (Fig. 2)

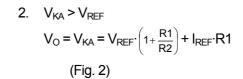
(note 3) TEST CIRCUIT (Fig. 3)

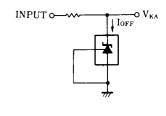

■ TEST CIRCUITS

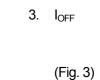

1.
$$V_{KA} = V_{REF}$$

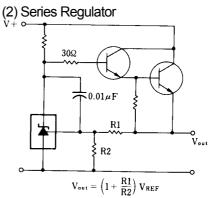
 $V_O = V_{KA} = V_{REF}$

■ TYPICAL APPLICATION

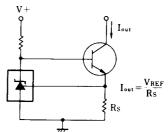

(1) Shunt Regulator

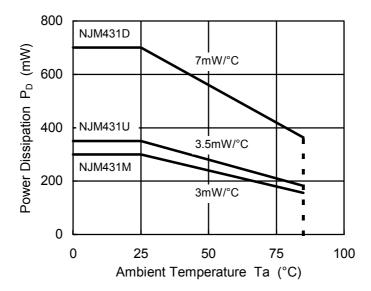


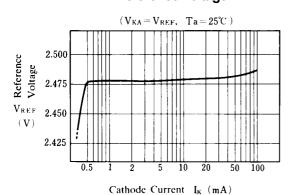

(3) Output Control of a Three-Terminal fixed Regulator

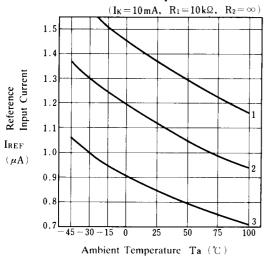


INPUT o-R1;



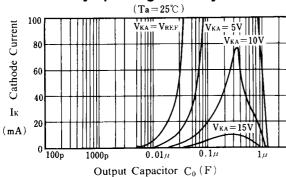



(4) Constant Current Source


■ POWER DISSIPATION VS. AMBIENT TEMPERATURE

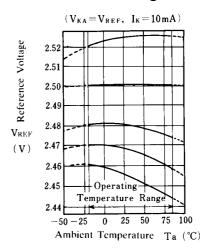
■TYPICAL CHARACTERISTICS Reference Voltage

Reference Input Current

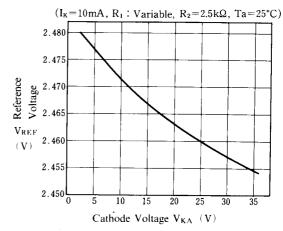

 $I_{REF}(dev)$

No.1 -0.38µA

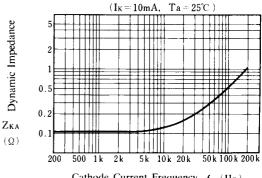
No.2 -0.27µA


No.3 -0.21µA

Safety Operating Boundary Condition


Note) Oscillation might occure while operating within the range of safety curve. So that, it is necessary to make ample margins by taking considerations of fluctuation of the device.

Reference Voltage



$(Ta = -20 \text{ to } 25^{\circ}\text{C})$	$(Ta = 25 \text{ to } 85^{\circ}\text{C})$	(Ta = 25°C)
+5mV	+1mV	2525mV
0mV	0mV	2501mV
0mV	-6mV	2481mV
-2mV	-9mV	2468mV
-5mV	-12mV	2456mV
	+5mV 0mV 0mV -2mV	+5mV +1mV 0mV 0mV -6mV -2mV -9mV

Reference Voltage

Dynaminc Impedance

Cathode Current Frequency f_i (Hz)

[CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.