

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

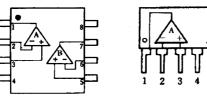
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DUAL HIGH CURRENT OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM4556A integrated circuit is a high-gain, high output current dual operational amplifier capable of driving ±70mA into 150 Ω loads (±10.5V output voltage),and operating low supply voltage ($V^{\dagger}N^{-}=\pm 2V^{\sim}$).

The NJM4556A combines many of the features of the popular NJM4558 as well as having the capability of driving 150Ω loads.In addition,the wide band-width,low noise,high slew rate and low distortion of the NJM4556A make it ideal for many audio, telecommunications and instrumentation applications.


■ FEATURES

 Operating Voltage 	(±2V~±18V)
 High Output Current 	(I _O =70mA)
 Slew Rate 	(3V/µs typ.)
 Gain Band Width Product 	(8MHz typ.)
 Equivalent Input Noise Voltage 	(10nV/√Hz typ.)
Package Outline	DIP8,DMP8,SIP8,SSOP8

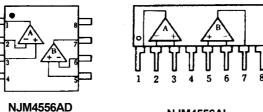
NJM4556AM NJM4556AV

■ PIN CONFIGURATION

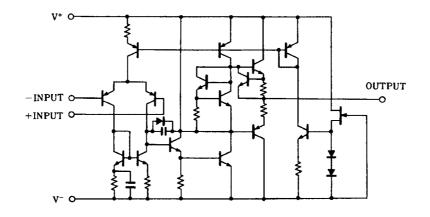
Bipolar Technology

NJM4556AL

■ PACKAGE OUTLINE



NJM4556AM



PIN FUNCTION 1.A OUTPUT 2.A-INPUT 3.A +INPUT 4.V 5.B +INPUT 6.B -INPUT **7.B OUTPUT** 8.V

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

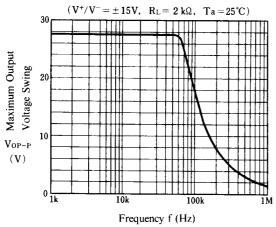
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	± 18	V
Differential Input Voltage	V_{ID}	± 30	V
Input Voltage	V _{IC}	± 15 (note)	V
Power Dissipation	P _D	(DIP8) 700 (DMP8) 300 (SSOP8) 250 (SIP8) 800	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

(note) For supply voltage less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

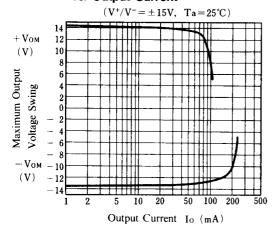
■ ELECTRICAL CHARACTERISTICS (NJM4556AD/NJM4556AL)

(V⁺/V⁻=±15V,Ta=25°C)

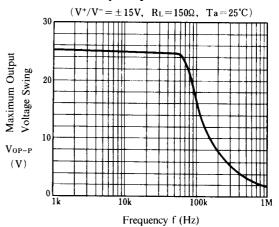
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	0.5	6.0	mV
Input Offset Current	I _{IO}		-	5	60	nA
Input Bias Current	lΒ		-	50	500	nA
Input Resistance	R _{IN}		0.3	5	-	ΜΩ
Large Signal Voltage Gain	A_{V}	R _L ≥2kΩ,V _O =±10V	86	100	-	dB
Maximum Output Voltage Swing 1	V _{OM1}	R _L ≥2kΩ	± 12	± 13.5	-	V
Maximum Output Voltage Swing 2	V_{OM2}	R _L ≥150Ω	± 10.5	± 11	-	V
Input Common Mode Voltage Range	V_{ICM}		± 13.5	± 14	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	76.5	90	-	dB
Operating Current	Icc		-	9	12	mA
Slew Rate	SR		-	3	-	V/µs
Gain Bandwidth Product	GB		-	8	-	MHz

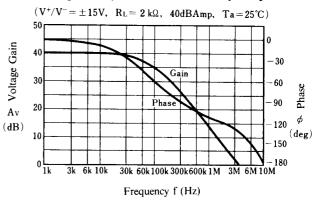

■ ELECTRICAL CHARACTERISTICS (NJM4556AM / NJM4556AV)

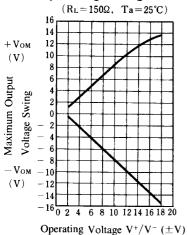
(V⁺/V⁻=±15V,Ta=25°C)

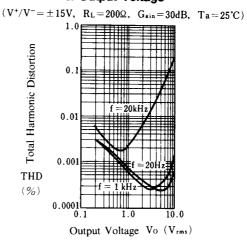

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V_{IO}	R _S ≤10kΩ	-	0.5	6.0	mV
Input Offset Current	I _{IO}		-	5	60	nA
Input Bias Current	I_{B}		-	50	500	nA
Large Signal Voltage Gain	A_{V}	R _L ≥2kΩ,V _O =±10V	86	100	-	dB
Maximum Output Voltage Swing 1	V_{OM1}	$V_{IN}^{+}=4V, V_{IN}^{-}=3V, V^{+}=9V, V^{-}=0V$	7.5	-	-	V
Maximum Output Voltage Swing 2	V _{OM2}	I_{SOURCE} =40mA V_{IN}^{+} =3V, V_{IN}^{-} =4V, V^{+} =9V, V^{-} =0V I_{SINK} =40mA	-	-	2.1	V
Input Common Mode Voltage Range 1	V _{ICM1}	V ⁺ =9V,V ⁻ =0V,V _{IL}	-	-	1.5	V
Input Common Mode Voltage Range 2	V _{ICM2}	V ⁺ =9V,V ⁻ =0V,V _{IH}	8	-	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	76.5	90	-	dB
Supply Current	Icc	V ⁺ =9V,V ⁻ =0V	-	8	12	mA
Slew Rate	SR		-	3	-	V/µs
Gain Bandwidth Product	GB		-	8	-	MHz

■ TYPICAL CHARACTERISTICS

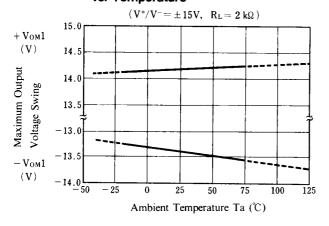

Maximum Output Voltage Swing vs. Frequency


Maximum Output Voltage Swing vs. Output Current

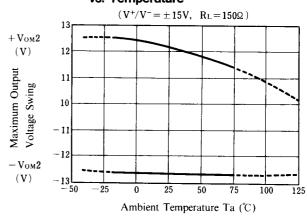

Maximum Output Voltage Swing vs. Frequency


Voltage Gain, Plase Shift vs. Frequency

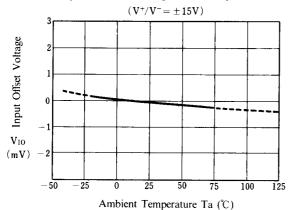
Maximum Output Voltage Swing vs. Operating Voltage

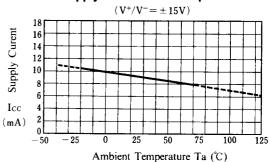


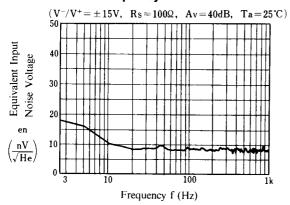
Total Harmonic Distortion vs. Output Voltage

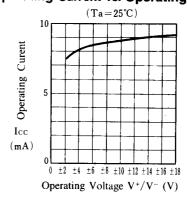


■ TYPICAL CHARACTERISTICS


Maximum Output Voltage Swing vs. Temperature


Maximum Output Voltage Swing vs. Temperature


Input Offset Voltage vs. Temperature


Supply Current vs. Temperature

Equivalent Input Noise Voltage vs. Frequency

Operating Current vs. Operating Voltage

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.