

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SERIES REGULATOR WITH RESET FUNCTION

■ GENERAL DESCRIPTION

The **NJM78LR05** is a series regulator with reset function.

In case of shut down or output voltage drop, the IC generates reset signal to a microcomputer.

That is suitable for items with microcomputer, such as TV sets, remote controller, refrigerator and others.

■ FEATURES

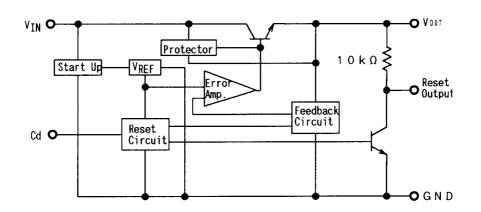
- Output Current I_O=150mA max.
- Reset Function Including
- Reset Delay Time can be Adjusted

by an External Capacitance.

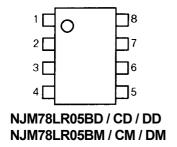
- Internal Over Current Protection
- Thermal Shut Down
- Bipolar Technology
- package Outline DIP8, DMP8, SIP8, SOT-89 (5Pin)

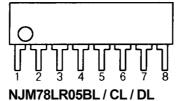
■ PACKAGE OUTLINE

NJM78LR05BD / CD / DD NJM78LR05BM / CM / DM


NJM78LR05BL/CL/DL NJM78LR05BU/CU/DU

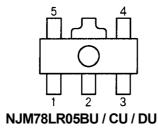
■ RESET THRESHOLD VOLTAGE LINE-UP


Reset Threshold Voltage	Version	Part Number
4.0V	D	NJM78LR05DX
4.2V	С	NJM78LR05CX
4.3V	В	NJM78LR05BX


[&]quot;X" is package suffix.

■ BLOCK DIAGRAM

■ PIN CONFIGURATION



MAXIMUM RATINGS

PIN FUNCTION

- 1. INPUT
- 2. NC
- 3. Cd
- 4. NC
- 5. GND
- 6. RESET-OUTPUT
- 7. NC
- 8. OUTPUT

SYMBOL

PIN FUNCTION

- 1. Cd
- 2. GND
- 3. RESET-OUTPUT
- 4. OUTPUT
- 5. INPUT

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER

٧ ۵	<u> </u>
UNIT	
V	
m\/\	

 $(T_a=25^{\circ}C)$

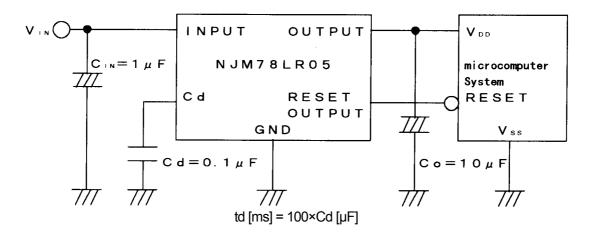
Input Voltage	V _{IN}	+20	V	
Power Dissipation	P _D	(DIP-8) 500 (DMP8) 500* (SIP8) 800 (SOT-89) 350	mW	
Operating Temperature Range	T _{opr}	-40 to +85	°C	
Storage Temperature Range	T _{stg}	-50 to +150	°C	

^{*}At on PC board.

■ RECOMMENDED OPERATING CONDITIONS

/T	-25	\sim
(1)	_a =25°	\mathbf{C}

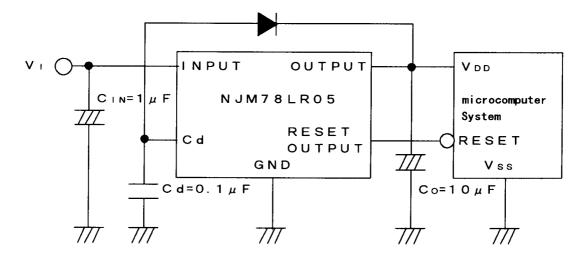
PARAMETER	SYMBOL	CONDITIONS	UNIT	
Input Voltage	V _{IN}	7.5 to 18	V	
Output Current	Ιο	1 to 100	mA	

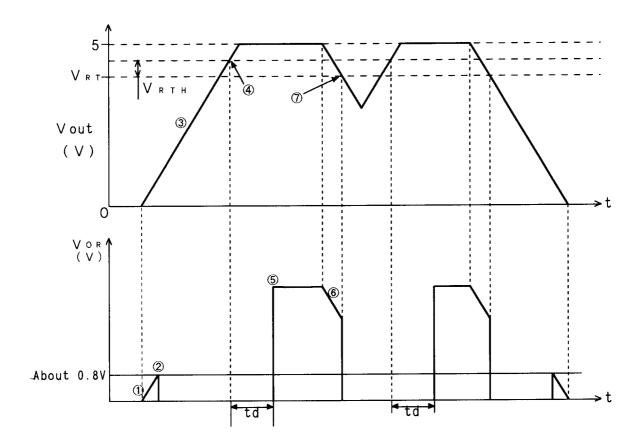

■ ELECTRICAL CHARACTERISTICS

 $(V_{IN}\!\!=\!\!10V\!,\,I_{O}\!\!=\!\!40mA,\,C_{IN}\!\!=\!\!1\mu F\!,\,C_{O}\!\!=\!\!10\mu F\!,\,T_{a}\!\!=\!\!25^{\circ}C)$

[Power Supply Block]

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vo	I _O =1mA	4.80	5.00	5.20	V
Quiescent Current	lQ	I _O =100mA		1.40	3.40	mA
Output Short Current	losc	OUTPUT-GND short	150	300	450	mA
Line Regulation 1	$\Delta V_{O} / V_{IN} 1$	7V ≤ V _{IN} ≤ 18V	-	6.0	65.0	mV
Line Regulation 2	$\Delta V_{O} / V_{IN} 2$	8V ≤ V _{IN} ≤ 18V	-	3.0	42.0	mV
Load Regulation 1	ΔV _O / I _O 1	I _O =1 to 100mA	-	9.0	60.0	mV
Load Regulation 2	$\Delta V_{O} / I_{O} 2$	I _O =1 to 40mA	-	3.0	30.0	mV
Ripple Rejection	RR	f=120Hz, e _{in} =1V _{P-P} , V _{IN} =8 to 18V	-	79	-	dB
Output Noise Voltage	V _{NO}	10Hz ≤ f ≤ 100kHz, l _O =1mA	-	80	-	μV
Dropout Voltage	ΔV_{I-O}		-	1.5	2.2	V
[Reset Block]						
(H) Reset Output Voltage	V _{ORH}		4.80	5.00	5.20	V
(L) Reset Output Voltage	V_{ORL}	V _{IN} =3V, I _O =1mA	-	10	200	mV
Reset Threshold Voltage	V_{RT}	B Version	4.12	4.30	4.48	٧
		C Version	4.03	4.20	4.37	
		D Version	3.84	4.00	4.16	
Reset Threshold Hysteresis Voltage	V_{RTH}		50	100	200	mV
Reset Output Delay Time	td	Cd=0.1µF	7.50	10.0	12.5	ms


■ APPLICATION CIRCUIT


Note 1: When the capacitance Cd is too large, the actual delay time is shorter than the calculated result because an electrical charge of Cd is discharged incompletely.

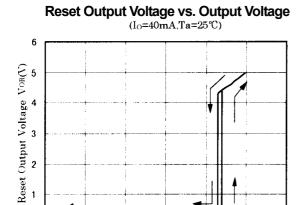
Solution of above problem:

- (1) Connect SBD between output terminal and Cd terminal. Please refer to the fallowing circuit.
- (2) Select larger capacitance, C_{IN} than Cd.

■ TIMING CHART

- When the input voltage is up to about 0.8V, some voltage is outputted at the reset output because the NJM78LR05 operation is unstable.
- ² When the input voltage goes over about 0.8V, the reset output becomes "L".
- ³ The output voltage is rising up with the input voltage.
- $^{ ext{\tiny QL}}$ When the output voltage goes over ($V_{\text{RT}}+V_{\text{RTH}}$), the delay circuit of reset output activates.

V_{RT}: Reset Threshold Voltage


V_{RTH}: Reset Threshold Hysterisis Voltage

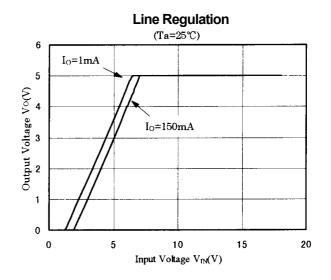
- ७ After the reset output delay time td has passed, the reset output becomes "H".
- [®] The output voltage is falling down with the input voltage.
- $\ensuremath{\circ}$ When the output voltage is less than V_{RT} , the reset output becomes "L".

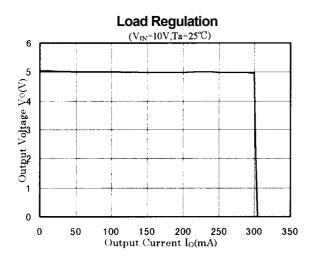
0

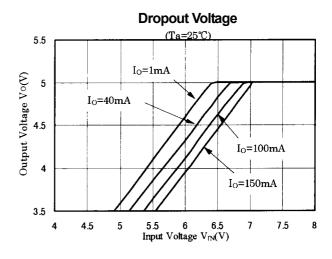
0

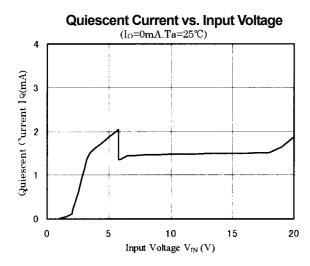
■ TYPICAL CHARACTERISTICS

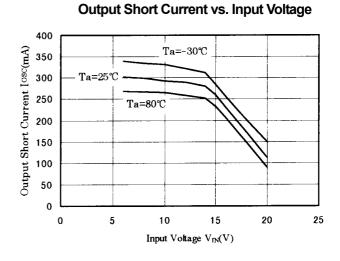
2

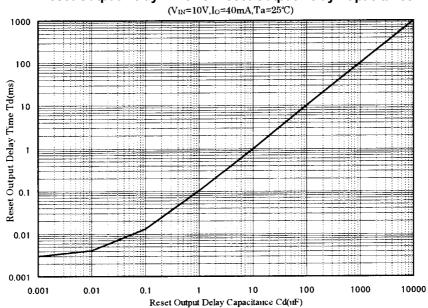

3

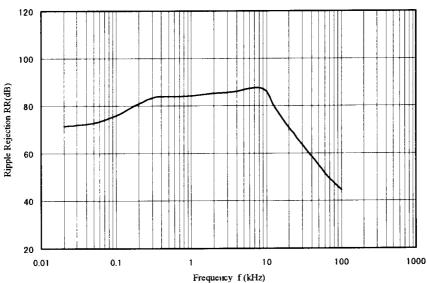

Output Voltage Vo(V)


4

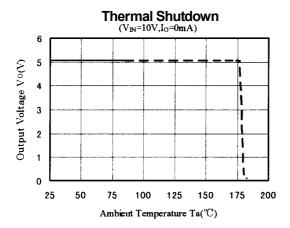

5

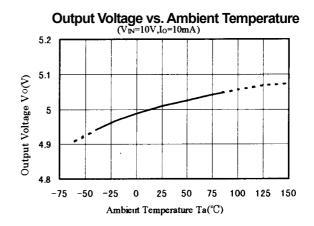

6



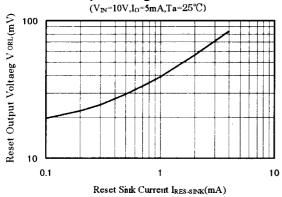

■ TYPICAL CHARACTERISTICS

Reset Output Delay Time vs. Reset Output Delay Capacitance




Ripple Rejection vs. Frequency

 $(V_{IN}=10V,I_O=40mA,enr=1V_{P-P},C_O=10\mu F,Ta=25^{\circ}C)$



■ TYPICAL CHARACTERISTICS

Reset Output Voltage vs. Reset Sink Current

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.