

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

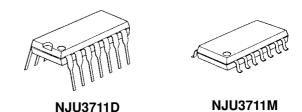
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

8-BIT SERIAL TO PARALLEL CONVERTER

■ GENERAL DESCRIPTION

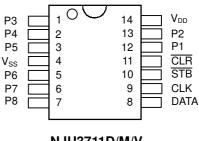

The NJU3711 is an 8-bit serial to parallel converter especially applying to MPU outport expander.

The effective outport assignment of MPU is available as the connection between NJU3711 and MPU using only 4 lines.

The serial data synchronizing with 5MHz or more clock can be input to the serial data input terminal and the data are output from parallel output buffer through serial in parallel out shift register and parallel data latches.

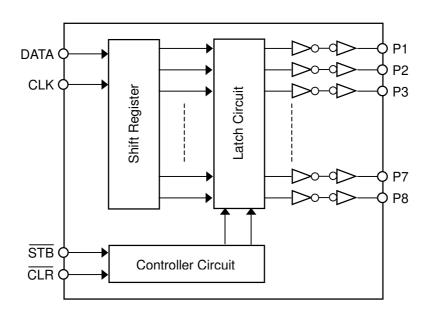
The hysteresis input circuit realizes wide noise margin and the high drive-ability output buffer (25mA) can drive LED directly.

■ PACKAGE OUTLINE



NJU3711V

■ FEATURES


- 8-Bit Serial In Parallel Out
- Hysteresis Input 0.5V typ Operating Voltage 5V±10%
- Maximum Operating Frequency 5MHz and more
- Output Current 25mA
- C-MOS Technology
- Package Outline DIP14/DMP14/SSOP14

PIN CONFIGURATION

NJU3711D/M/V

■ BLOCK DIAGRAM

NJU3711

■ TERMINAL DESCRIPTION

No.	SYMBOL	I/O	FUNCTION		
1	P3	0			
2	P4	0	Parallel Conversion Data Output Terminals		
3	P5	0			
4	V_{SS}	-	GND		
5	P6	0			
6	P7	0	Parallel Conversion Data Output Terminals		
7	P8	0			
8	DATA	_	Serial Data Input Terminal		
9	CLK	_	Clock Signal Input Terminal		
10	STB		Strobe Signal Input Terminal		
11	CLR	_	Clear Signal Input Terminal		
12	P1	0	Parallel Conversion Data Output Terminals		
13	P2	0	i araliel Conversion Data Output Terminals		
14	V_{DD}	-	Power Supply Terminal (4.5 to 5.5V)		

■ FUNCTIONAL DESCRIPTION

(1) Reset

When the "L" level is input to the $\overline{\text{CLR}}$ terminal, all latches are reset and all of parallel conversion output are "L" level.

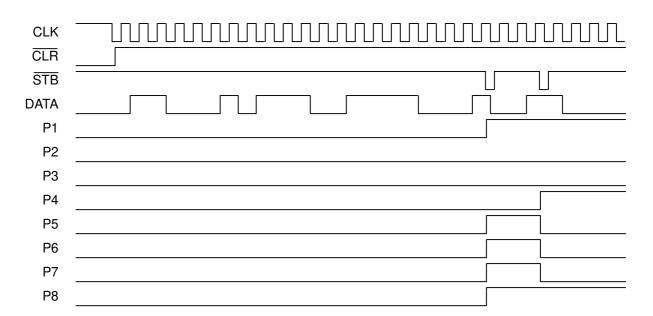
Normally, the CLR terminal should be "H" level.

(2) Data Transmission

In the STB terminal is "H" level and the clock signals are inputted to the CLK terminal, the serial data into the DATA terminal are shifted in the shift register synchronizing at a rising edge of the clock signal.

When the STB terminal is changed to "L" level, the data in the shift register are transferred to the latches.

Even if the STB terminal is "L" level, the input clock signal shifts the data in the shift register, therefore, the clock signal should be controlled for data order.


Furthermore, the 4 input circuits provide a hysteresis characteristics using the schmitt trigger structure to protect the noise.

CLK	STB	CLR	OPERATION
Х	Х	L	All of latches are reset (the data in the shift register is no change). All of parallel conversion outputs are "L".
	Н	Н	The serial data into the DATA terminal are inputted to the shift register. In this stage, the data in the latch is not changed.
L H			The data in the shift register is transferred to the latch. And the data in the latch is output from the parallel conversion output terminals.
<u>fl</u>	L	Н	When the clock signal is inputted into the CLK terminal in state of the STB="L" and CLR="H", the data is shifted in the shift register and latched data is also changed in accordance with the shift register.

Note 1) X: Don't care

NJU3711

■ TIMING CHART

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RAT	UNIT	
Supply Voltage Range	V_{DD}	-0.5 ~ +7.0		V
Input Voltage Range	Vı	V _{SS} -0.5 ~ V _{DD} +0.5		V
Output Voltage Range	Vo	V_{SS} -0.5 ~ V_{DD} +0.5		V
Output Current	Io	l ₀ ±25		mA
Output Short Current	l _{OSD}	$V_O=7V$, $V_I=0V$	20 (max)	mA
(P1~P8 Terminals) (Note 5)		V _O =0V, V _I =7V	-20 (max)	IIIA
Power Dissipation	P _D	700 (DIP) 300 (DMP) 300 (SSOP)		mW
Operating Temperature Range	Topr	-25	°C	
Storage Temperature Range	Tstg	-65 ⁻	°C	

Note 2) All voltage are relative to $V_{SS}=0V$ reference.

■ DC ELECTRICAL CHARACTERISTICS

(V_{DD}=4.5~5.5V, V_{SS}=0V, Ta=25°C, unless otherwise noted)

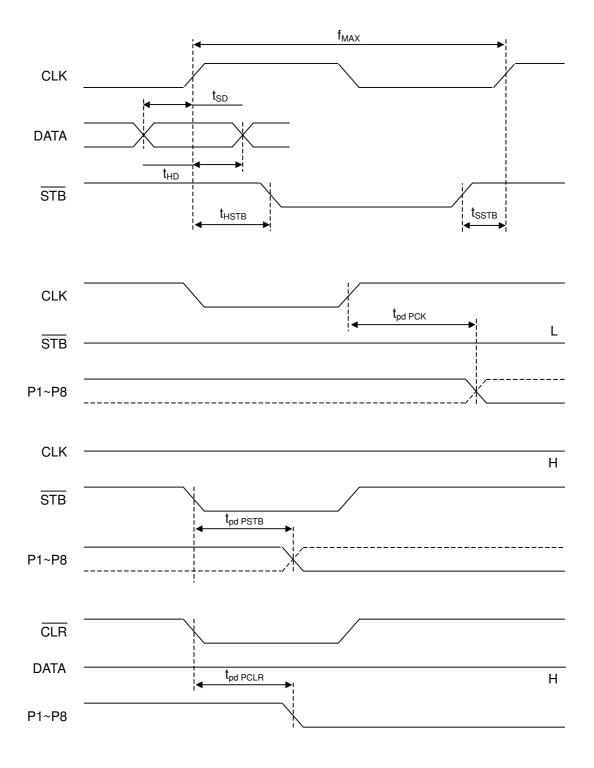
		(V I	DD=4.5~5.5 (/, V _{SS} =∪V, 1∂	a=23 G, unit	55 Otherwise	s Hoteu)
PARAMETER	SYMBOL	CONDITION		MIN	TYP	MAX	UNIT
Operating Voltage	V_{DD}			4.5	-	5.5	V
Operating Current	I _{DDS}	$V_{IH}=V_{DD}, V_{IL}=V_{SS}$		-	-	0.1	mA
High-level Input Voltage	V_{IH}			$0.7V_{DD}$	-	V_{DD}	V
Low-level Input Voltage	V_{IL}			V_{SS}	-	$0.3V_{DD}$	V
Input Leakage Current	ILI	V _I =0~V _{DD}		-10	-	10	μΑ
		I _{OH} =-25mA	P1~P8 Terminals	V _{DD} -1.5	-	V_{DD}	V
High-level Output Voltage (Note 6)		I _{OH} =-15mA		V _{DD} -1.0	-	V_{DD}	
		I _{OH} =-10mA		V _{DD} -0.5	-	V_{DD}	
	V_{OLD}	I _{OL} =+25mA	P1~P8 Terminals	V_{SS}	-	1.5	V
Low-level Output Voltage (Note 6)		I _{OL} =+15mA		V_{SS}	-	0.8	
		I _{OL} =+10mA		V_{SS}	-	0.4	

Note 6) Specified value represent output current per pin. When use, total current consideration and less than power dissipation in rating operation should be required.

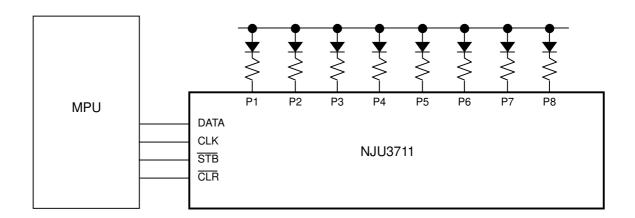
Note 3) Do not exceed the absolute maximum ratings, otherwise the stress may cause a permanent damage to the IC. It is also recommended that the IC be used in the range specified in the DC electrical characteristics, or the electrical stress may cause malfunctions and impact on the reliability.

Note 4) To stabilize the IC operation, place decoupling capacitor between V_{DD} and V_{SS} .

Note 5) V_{DD}=7V, V_{SS}=0V, less than 1 second per pin.


■ SWITCHING CHARACTERISTICS

 $(V_{DD}=4.5\sim5.5V,\ V_{SS}=0V,\ Ta=25^{\circ}C,\ unless\ otherwise\ noted)$


		(100 0.01)	.33,	,		· · · · · · · · ·
PARAMETER SYMBOL		CONDITION	MIN	TYP	MAX	UNIT
Set-Up Time	t _{SD}	DATA-CLK	20	-	-	ns
Hold Time	t _{HD}	CLK-DATA	20	-	-	ns
Set-Up Time	t _{SSTB}	STB-CLK	30	-	-	ns
Hold Time	t _{HSTB}	CLK-STB	30	-	-	ns
	t _{pd PCK}	CLK-P1~P8	-	-	100	ns
Output Delay Time	t _{pd PSTB}	STB-P1~P8	-	-	80	ns
	t _{pd PCLR}	CLR-P1~P8	-	-	80	ns
Maximum Operating Frequency	f _{MAX}		5	-	-	MHz

Note 7) C_{OUT}=50pF

■ SWITCHING CHARACTERISTICS TEST WAVEFORM

■ APPLICATION CIRCUIT

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are application crouns in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.