: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Drive Fundamental Quartz Crystal Oscillator

- GENERAL DESCRIPTION

The NJU6368 series is a C-MOS fundamental quartz crystal oscillator that consists of an oscillation amplifier, 3-stage divider and 3-state output buffer.

The 3-stage divider generates only one frequency selected of $f_{0}, f_{0} / 2, f_{0} / 4$ and $f_{0} / 8$ by internal circuits is output.

The oscillation amplifier is realized very low stand-by current using NAND circuit.

The 3-state output buffer is C-MOS compatible and can drive $50 \mathrm{pF}(@ 5 \mathrm{~V}) \mathrm{C}-\mathrm{MOS}$ load.

Furthermore, the package is small-sized SOT-23-6-1.

- FEATURES
- Operating Voltage
2.7 to 5.5 V
- Maximum Oscillation Frequency

50 MHz

- Low Operating Current
- High Fan-out
$\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} @ 3.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA} @ 5.0 \mathrm{~V}$
- 3-Stage Divider

Maximum Divider $\mathrm{f}_{0} / 8$

- Oscillation Stop and Output Stand-by Function
- 3-State Output Buffer
- Oscillation Capacitors Cg and Cg on-Die
- Package Outline

Thin-Die/SOT-23-6-1

- C-MOS Technology
- LINE-UP TABLE

Type No.						$\mathrm{F}_{\text {OUT }}$	Internal Connect	$\mathrm{Cg} / \mathrm{Cd}$
NJU6368	A	f_{0}	Connected A Line	$15 / 15 \mathrm{pF}$				
	B	$\mathrm{f}_{0} / 2$	Connected B Line	$15 / 15 \mathrm{pF}$				
	C	$\mathrm{f}_{0} / 4$	Connected C Line	$15 / 15 \mathrm{pF}$				
	D	$\mathrm{f}_{0} / 8$	Connected D Line	$15 / 15 \mathrm{pF}$				
	P	f_{0}	Connected A Line	Non				

- EXAMPLE OF PART NUMBER
1)NJU6368AC-C
$\mathrm{F}_{\text {OUT }}=\mathrm{f}_{0}$, Die Thickness $=260 \mathrm{um}$
2)NJU6368CF1
$F_{\text {OUT }}=f_{0} / 4$, Mold package, SOT-23-6-1
- PACKAGE OUTLINE

NJU6368XC-C
NJU6368XF1

- PAD LOCATION

Thin-Die

SOT-23-6-1

- COORDINATES

No	Pad Name	X	Y
1	$\mathrm{~F}_{\text {OUT }}$	-207	247
2	$\mathrm{~V}_{\text {SS }}$	-207	-247
3	XT	33	-247
4	$\overline{\mathrm{CONT}}$	207	-247
5	$\mathrm{~V}_{\mathrm{DD}}$	207	-17
8	$\overline{\mathrm{XT}}$	207	172

Starting Point:Die Center Unit[um]
Die Size:0.67x0.75mm
Thin-Die Thickness:260 ± 20 um
Pad Size:90x90um
Die Substrate: V ${ }_{D D}$ Level

- BLOCK DIAGRAM

- TERMINAL DESCRIPTION

SYMBOL	FUNCTION	
	Oscillation and 3-state Output Buffer Control	
	CONT	$\mathrm{F}_{\text {OUT }}$
CONT	H or OPEN	Output either one frequency selected of f_{0}, $\mathrm{f}_{0} / 2, \mathrm{f}_{0} / 4$ and $\mathrm{f}_{0} / 8$ Note1)
	L	Oscillation Stop and High impedance Output
XT	Quartz Crystal Connecting Terminals	
$\overline{\mathrm{XT}}$		
$\mathrm{V}_{S S}$	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	
$\mathrm{F}_{\text {OUT }}$	Frequency Output	
V_{DD}	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} / 5.0 \mathrm{~V}$	

Note1) Refer to the line-up table.

- ABSOLUTE MAXIMUM RATINGS

PARAMETER			
SYMBOL			
Supply Voltage	RATING	UNIT	
Input Voltage	V_{DD}	-0.5 to +7.0	V
Output Voltage	V_{IN}	$\mathrm{V}_{\mathrm{SS}}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Input Current	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output Current	I_{IN}	± 10	mA
Power Dissipation Note 4)	I_{O}	P	± 25
P	$200(\mathrm{SOT}-23-6-1)$	mW	
Operating Temperature Range	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

Note2) If the supply voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ is less than 7.0 V , the input voltage must not over the V_{DD} level though 7.0 V is limit specified.
Note3) Decupling capacitor should be connected between V_{DD} and V_{SS} due to the stabilized operation for the circuit.
Note4) Power Dissipation is the maximum value of a package simple substance.

- ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	$V_{D D}$		2.7		5.5	V

$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Current	$I_{\text {D }}$	A version,fosc $=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$			8	mA
		B version, fosc $=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$			6	
		C version,fosc $=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$			4	
		D version, fosc $=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$			3	
		$\begin{aligned} P \text { version, } f o s c=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}} & =30 \mathrm{pF} \\ & \text { Note5) } \end{aligned}$			8	
Oscillation Stopping Current	$\mathrm{I}_{\text {StB }}$	$\overline{\mathrm{CONT}}=\mathrm{V}_{\text {Ss }}$, No load		2	5	uA
Stand-by Current	Ist	$\overline{\mathrm{CONT}}=\mathrm{XT}=\mathrm{V}_{\text {SS }}$, No load Note6)			1	uA
Input Voltage	$\mathrm{V}_{1 \mathrm{H}}$		2.31		3.3	V
	VIL		0		0.99	V
Output Current	I_{OH}	$\mathrm{V}_{\text {OH }}=2.97 \mathrm{~V}$	8			mA
	l_{OL}	$\mathrm{V}_{\mathrm{OL}}=0.33 \mathrm{~V}$	8			mA
Input Current	I_{N}	$\overline{\mathrm{CONT}}=0.8 \mathrm{~V}$ DD		10.0	15.0	uA
		$\overline{\mathrm{CONT}}=0.2 \mathrm{~V}_{\mathrm{DD}}$		1.8	3.0	uA
3-state Off Leakage Current	l Oz	$\overline{\mathrm{CONT}}=\mathrm{V}_{\text {SS }}, \mathrm{F}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$			± 0.1	uA
Feedback Resistance	Rf			255		$\mathrm{k} \Omega$
Internal Capacitor	$\mathrm{Cg} / \mathrm{Cd}$	fosc=16MHz, A/B/C/D version		15/15		pF
		P version		-		
Maximum Oscillation Frequency	$\mathrm{F}_{\text {MAX }}$		50			MHz
Output Signal	SYM	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, @ \mathrm{~V}_{\mathrm{DD}} / 2$	45	50	55	\%
Symmetry		$\mathrm{C}_{L}=30 \mathrm{pF}, @ \mathrm{~V}_{\mathrm{DD}} / 2$	45	50	55	
Output Signal Rise Time	tr	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 10 \%$ to 90\%		2	4	ns
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 10 \%$ to 90%		4	8	
Output Signal Fall Time	tf	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 90 \%$ to 10\%		2	4	ns
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 90 \%$ to 10\%		4	8	
Output Disable time	$\mathrm{t}_{\text {PLZ }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{UP}}=10 \mathrm{k} \Omega$			150	ns
Output Enable Time	$\mathrm{t}_{\text {PZL }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{UP}}=10 \mathrm{k} \Omega$			150	ns

Note5) P version is measured with external capacitors contained 13 pF for Cg and 13 pF for Cd .
Note6) Excluding input current on $\overline{\text { CONT Terminal. }}$

				$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\right.$,		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Current	$I_{\text {D }}$	A version, fosc $=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			15	mA
		B version,fosc $=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			11	
		C version,fosc $=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			9	
		D version,fosc $=16 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			7	
		P version,fosc $=16 \mathrm{MHz}, \mathrm{C}_{\llcorner }=50 \mathrm{pF}$ Note5)			15	
Oscillation Stopping Current	$I_{\text {stb }}$	$\overline{\mathrm{CONT}}=\mathrm{V}_{\text {ss }}$, No load		5	10	uA
Stand-by Current	Ist	$\overline{\mathrm{CONT}}=\mathrm{XT}=\mathrm{V}_{\text {ss }}$, No load Note6)			1	uA
Input Voltage	V_{1}		3.5		5.0	V
	VIL		0		1.5	V
Output Current	I_{OH}	$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$	16			mA
	loL	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	16			mA
Input Current	I_{N}	$\overline{\mathrm{CONT}}=0.8 \mathrm{~V}_{\text {D }}$		27.0	40.0	uA
		$\overline{\mathrm{CONT}}=0.2 \mathrm{~V}_{\text {D }}$		5.5	8.0	uA
3-state Off Leakage Current	l oz	$\overline{\mathrm{CONT}}=\mathrm{V}_{\text {SS }}, \mathrm{F}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$			± 0.1	uA
Feedback Resistance	Rf			255		k Ω
Internal Capacitor	Cg/Cd	fosc=16MHz, A/B/C/D version		15/15		pF
		P version		-		
Maximum Oscillation Frequency	$\mathrm{F}_{\text {Max }}$		50			MHz
Output Signal	SYM	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, @ \mathrm{~V}_{\text {DD }} / 2$	45	50	55	\%
Symmetry		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, @ \mathrm{~V}_{\text {DD }} / 2$	45	50	55	
Output Signal Rise	tr	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 10 \%$ to 90%		2	4	ns
Time		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, 10 \%$ to 90\%		4	8	
Output Signal Fall ${ }_{\text {Time }}$	tf	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 90 \%$ to 10%		2	4	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, 90 \%$ to 10\%		4	8	
Output Disable time	$\mathrm{t}_{\text {PLZ }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{UP}}=10 \mathrm{k} \Omega$			100	ns
Output Enable Time	tpzL	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{up}}=10 \mathrm{k} \Omega$			100	ns

Note5) P version is measured with external capacitors contained 13 pF for Cg and 13 pF for Cd .
Note6) Excluding input current on $\overline{\mathrm{CONT}}$ Terminal.

- MEASUREMENT CIRCUITS
(1)Operating Current, Output Signal Symmetry, Output Signal Rise/Fall Time

(2)Check of Operation

(3)Output Disable/Enable Time

