

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SIGNAL LEVEL SENSOR SYSTEM

■ GENERAL DESCRIPTION

The **NJU7181** is a signal level sensor system IC. It sends a High flag to the microprocessor or other equipments whenever it detects the existence of the audio signal.

The **NJU7181** includes a delay circuit which allows the IC continue to hold the flag after the absence of the audio signal. This holding time can be adjusted with external capacitor.

Together with its adjustable Input Sensitivity (by external resistor) & its characteristic of low current consumption and low operating voltage, **NJU7181** is suitable for Eco-Design of Energy-using Products and for battery operated applications.

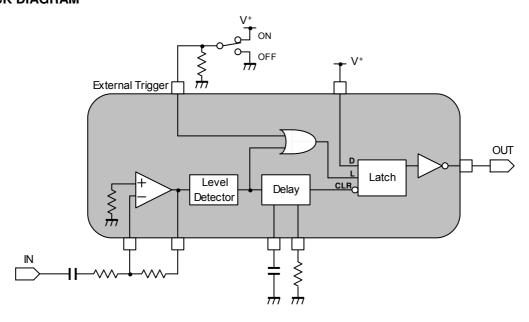
■ PACKAGE OUTLINE

NJU7181RB1 MSOP8 (TVSP8)

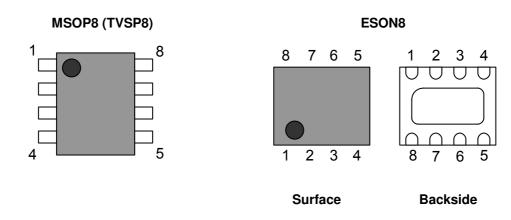
NJU7181KU1

■ FEATURES

- Operating Voltage
 Low Operating Current
 55µA typ.
- Delay circuit for long Recovery time
- · Adjustable Recovery time by external capacitor
- · Adjustable Input Sensitivity by external resistance
- C-MOS Technology
- Package Outline MSOP8 (TVSP8)*


ESON8

*MEET JEDEC MO-187-DA / THIN TYPE


■ APPLICATIONS

- Power Saving for battery operated devices
- Muting Application
- Memory saving for recording devices
- Half- duplex transmission application

■ BLOCK DIAGRAM

■ PIN CONFIGURATION

No.	Symbol	Function			
1	IN	AC Input			
2	AMP_OUT	Amplifier Output			
3	TRIN	External Trigger Input			
4	GND	Ground			
5	CAP_D	Delay Time Capacitor			
6	RES_D	Delay Time Resister			
7	OUT	DC Output			
8	V ⁺	Supply Voltage			

■ ABSOLUTE MAXIMUM RATING (Ta=25°C)

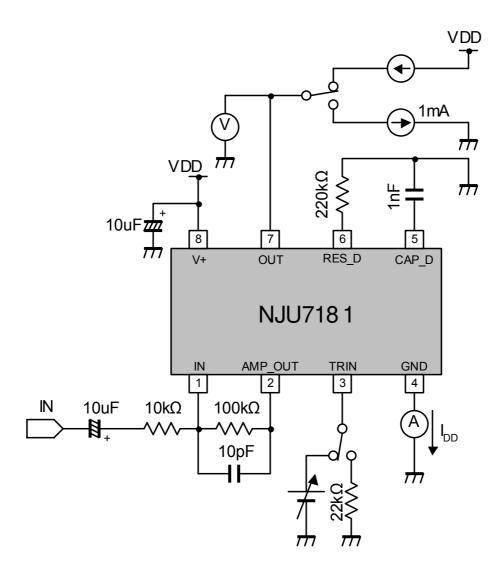
PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V ⁺	+7	V
Power Dissipation	P _D	MSOP8 (TVSP8): 470 (Note1) ESON8: 450	mW
Maximum Input Voltage	V_{IMAX}	0 ∼ V ⁺ (Note2)	V
Operating Temperature Range	Topr	-40 ~ +85	°C
Storage Temperature Range	Tstg	-40 ~ +125	°C

(Note1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting

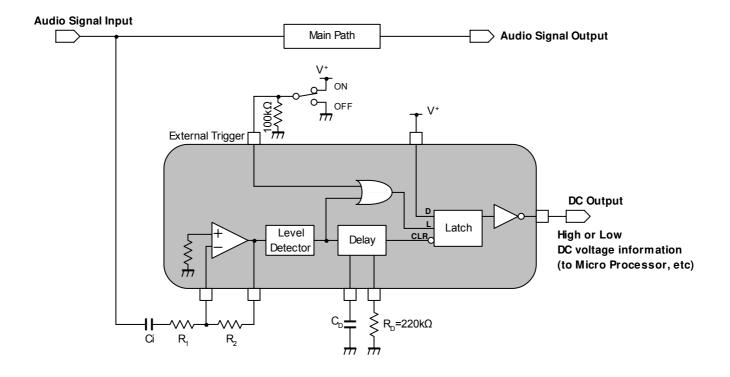
(Note2) Don't put Input Voltage more than Power Supply Voltage.

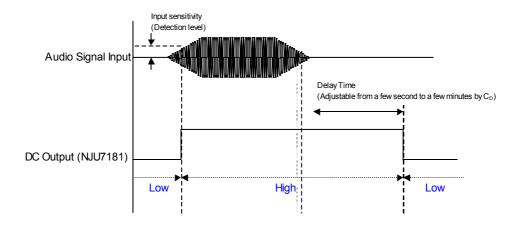
■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{\dagger}=3V, R_1=10k\Omega, R_2=100k\Omega, R_d=220k\Omega, C_d=10nF)$


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺		0.9	-	5.5	V
Operating Current	I _{DD}	No signal, R _L =∞	ı	55	100	μΑ
Input Sensitivity	V _{INS}	f=1kHz	-45	-41.5	-38	dBV
Delay Time 1	T _{delay1}		1.0	1.5	2.0	Sec
Delay Time 2	T _{delay2}	V ⁺ =0.9V	1.0	1.5	2.0	Sec
Delay Time 3	T _{delay3}	C _d =10µF	-	1,500	-	Sec

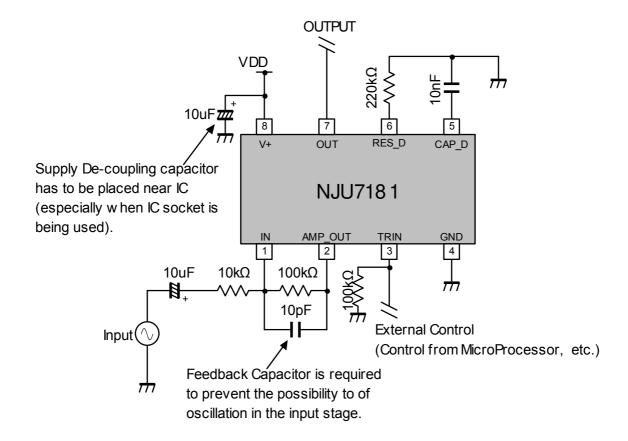
■ DC CHARACTERISTICS DC Output Terminal (7pin)


(Ta=25°C)


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
High Level Output Voltage	V _{OH}	I _{SOURCE} =1mA	V ⁺ -0.2	-	V ⁺	V	
Low Level Output Voltage	V _{OL}	I _{SINK} =1mA	0	-	0.2	V	
External Trigger Switch Terminal (3pin) (Ta=25°C)							
High Level Input Voltage	V _{IH}		V ⁺ -0.2	-	V ⁺	V	
Low Level Input Voltage	V _{IL}		0	-	0.2	V	

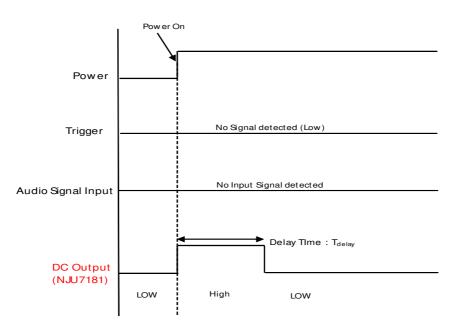
■ TEST CIRCUIT

■ APPLICATION CIRCUIT



Attack Time:

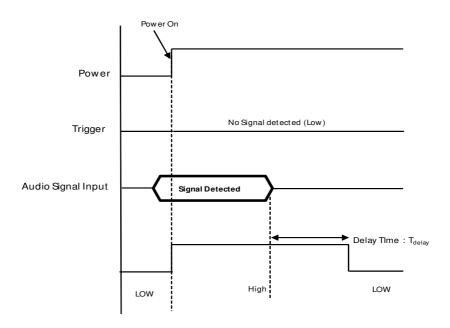
Note:


■ APPLICATION NOTE

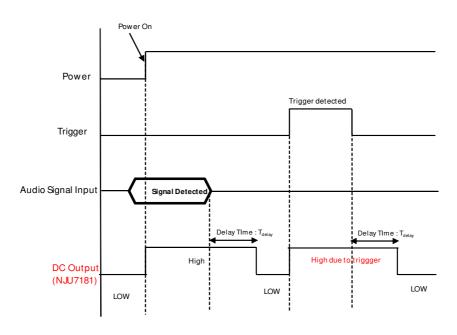
DC Output Waveform Scenario

Scenario 1: Power-ON

- Output will be high initially when NJU7181 is first powered up even if there is no input signal detected.

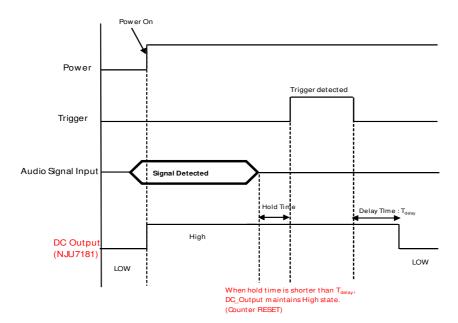

POWERON with no signal detected

Scenario 2: Only Audio Signal detected


– Output will be or maintain high when **either an input signal or trigger signal is detected**. The delay circuit will only be activated **when both signals is not present**. NJU7181 will then hold the output level for a delay time which can be adjusted by the Capacitor value @ pin 5.

Audio signal present

Scenario 3: Trigger Signal detected (Case 1)


– Output will be or maintain high when either an input signal or trigger signal is detected. The delay circuit will only be activated when both signals is not present. Output is set to Low state when a delay time passes. Output is set to High state when either an input signal or trigger signal is detected again.

Case 1: Trigger signal present (After output LOW)

Scenario 4: Trigger Signal detected (Case 2)

– Output will be or maintain high when **either an input signal or trigger signal is detected**. When hold time is shorter than a delay time, output maintains High state (Counter RESET). NJU7181 will then hold the output level for a delay time which can be adjusted by the Capacitor value @ pin 5.

Case 2: Trigger signal present (During output HIGH)

♦ Input Sensitivity [Ta =25°C]

The input sensitivity is defined as follows.

$$V_{INS}=20*log(R1/R2) - 21.5 [dBV] ----- (1)$$

Note) The input sensitivity recommends the setting of -60dBV (1mVrms) or more.

Note) The R2 value should be $100k\Omega$ or more.

♦ Frequency Response

The input capacitor "Ci" forms HPF with "R1". The cut-off frequency is defined as follows. Please decide C1 value in consideration of the frequency response necessary for the signal-detecting.

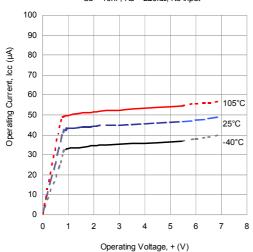
$$fc=1/(2\pi \times Ci \times R1) [Hz] ---- (2)$$

◆ Delay time [With R_D = 220Kohm]

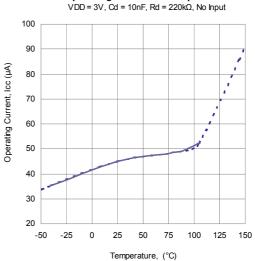
The Recovery time is defined as follows.

$$T_{delay} = 1.5*10^8 * C_R [sec] ----- (3)$$

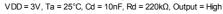
■ TERMINAL DESCRIPTION

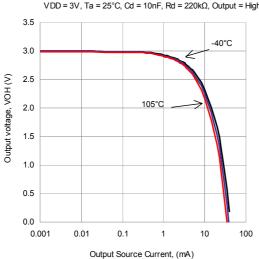

Terminal	SYMBOL	FUNCTION	EQUIVALENT CIRCUIT	VOLTAGE
1	IN	AC Input		0.3V
2	AMP_OUT	Amplifier Output	AMP_OUTO SEE	0.3V
3	TRIN	External Trigger Input	TRIN S2.5	-
5	CAP_D	Delay Time Capacitor		0V

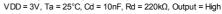
■ TERMINAL DESCRIPTION

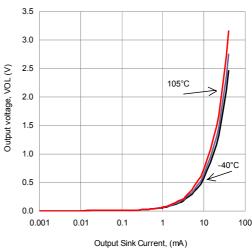

Terminal	SYMBOL	FUNCTION	EQUIVALENT CIRCUIT	VOLTAGE
6	RES_D	Delay Time Resistor	RES.DO WHE HE SHOW OND	3uA x R _D
7	OUT	DC Output	OUT OF S2.5	0 or V⁺
8	V ⁺	Supply Voltage	9ND ()	V ⁺

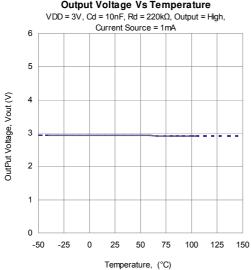
■ TYPICAL CHARACTERISTICS



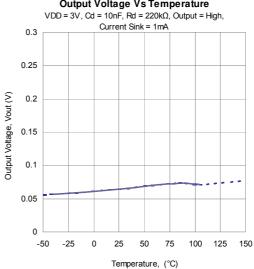


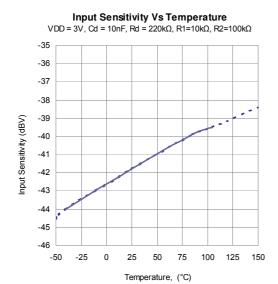


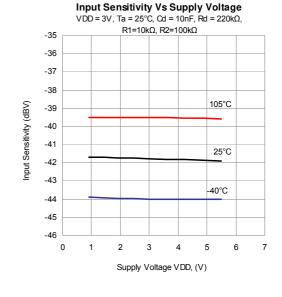

Output Voltage Vs Output Current Source

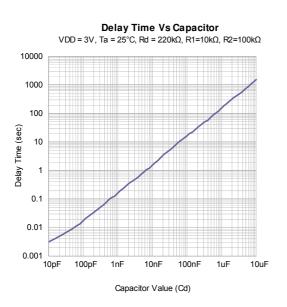


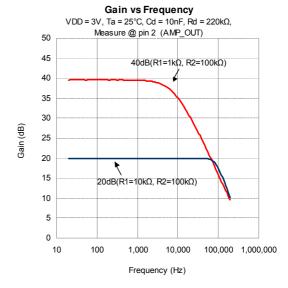
Output Voltage Vs Output Current Sink




Output Voltage Vs Temperature




Output Voltage Vs Temperature



■ TYPICAL CHARACTERISTICS

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.