imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

VOLTAGE TRIPLER

GENERAL DESCRIPTION

The NJU7670 is a voltage tripler incorporated CR oscillator, voltage converter, reference voltage circuit and voltage regulator.

It can generates triple or double negative voltage of an operating voltage ranging from -2.6V to -6V.

The application circuit of tripler requires three capacitors, and doubler requires only two capacitors.

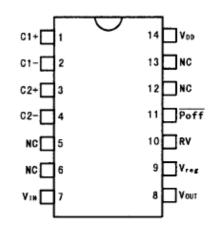
Furthermore, any kind of output voltage is available by the internal voltage regulator.

FEATURES

•

- Triple / Double Voltage Output
- Operating Voltage --- -2.6V to -6.0V
- High-efficiency Voltage Conversion Rate
 - --- 95% (lout = 5mA)
 - High Output Current --- MAX 20mA (V_{IN} = -5V)
- CR Oscillator ON-Chip
- Output OFF Function By External Signal
 - --- ON / OFF of Vreg
- C-MOS Technology
- Package Outline DIP/DMP/SSOP 14

PACKAGE OUTLINE

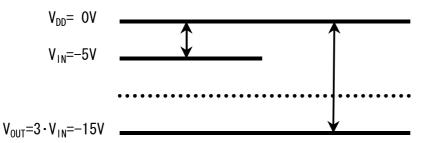


NJU7670D

NJU7670M

PIN CONFIGURATION

BLOCK DIAGRAM

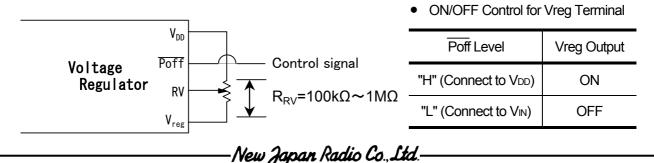

TERMINAL DESCRIPTION

No.	SYMBOL	FUNCTION
1	C1+	Charge Pump Capacitor 1(+) Connecting Terminal
2	C1-	Charge Pump Capacitor 1(-) Connecting Terminal
3	C2+	Charge Pump Capacitor 2(+) Connecting Terminal
4	C2-	Charge Pump Capacitor 2(-) Connecting Terminal
5	NC	Non Connection
6	NC	Non Connection
7	V _{IN}	Power Supply Terminal (-)
8	V _{OUT}	Voltage Output Terminal
9	V _{reg}	Voltage Regulator Output Terminal
10	RV	Voltage Regulator Adjustment Terminal
11	Poff	V _{reg} Output ON/OFF Control Terminal
12	NC	Non Connection
13	NC	Non Connection
14	V _{DD}	Power Supply Terminal (+)

FUNCTIONAL DESCRIPTION

(1) Voltage Converter

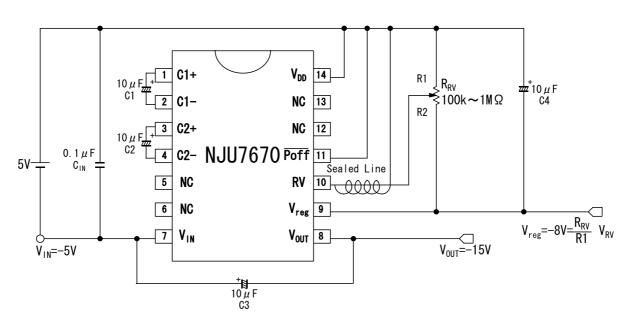
The voltage converter generates double or triple voltage against VIN.


(2) Voltage Reference Circuit The voltage reference circuit is generating the reference voltage for a voltage regulator.

(3) Voltage Regulator

The voltage regurator output stabilized voltage which regulated by using the external resistor against double or triple voltage of the input voltage.

(3-1) Output-OFF Function


As this circuit incorporated output-off function, the voltage regulator output (ON/OFF) is performed by the signal come from system.

(3-2) Example of the Voltage Regulation

The voltage regulator has a output terminal which can be adjusted the output voltage to any kind of voltage by resistance RRv.

As the RV terminal input impedance is high. Therefore special care against noise is required. (Use a sealed line or others noise-proof method)

Tripler Operation + Voltage Regulator Operation

The IC may have a possibility not to operate properly with unstable supply voltage due to large transient current when the capacitor is charged or discharged.

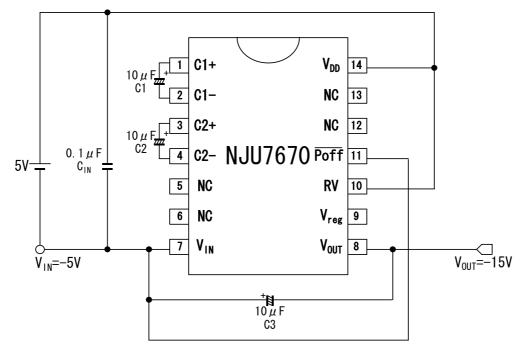
The decoupling capacitor (C_{IN}) connect as close as possible to the IC.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	RATINGS		UNIT	
Supply Voltage	V _{IN}	$ V_{DD} - V_{DD} \le 20$		V	
Input Voltage	V _{I1}	V _{IN} -0.5 to +0.5 Note1)		V	
	V _{I2}	V _{OUT} -0.5 to +0.5 Note2)			
Output Voltage	V _{OUT}	-20.0		V	
	P _D	700	DIP		
Power Dissipation		300	DMP	mW	
		250	SSOP		
Operating Temperature Range	Topr	-20 to +75		°C	
Storage Temperature	Tstg	-40 to +125		°C	

Note1): Apply to Poff terminal

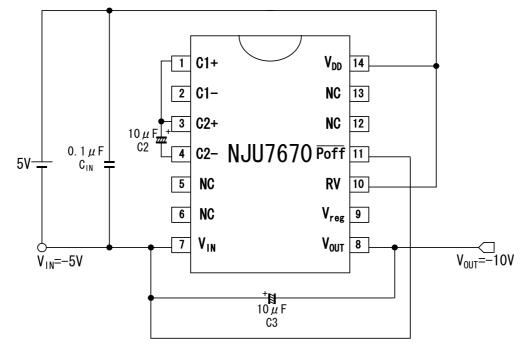
Note2): Apply to RV terminal

ELECTRICAL CHARACTERISTICS


		(V _{DD} =0V, V _{IN} =-	–5V, C⊪	_ν =0.1μF,	Ta=25°0	C) Note3)
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V _{IN}		-6.0	_	-2.6	V
Output Voltage	V _{OUT}		-18.0	_	_	V
Oulput voltage	V _{reg}	$RL = \infty$, $R_{RV} = 1M\Omega$, $V_{OUT} = -18V$	-18.0	-	-2.6	
Regulator Operating Voltage	V _{(OUT}		-18.0	_	-8.0	V
Current Consumption 1	I _{DD1}	$\overline{\text{Poff}}=\text{"H"} \qquad \text{note4})$ $\text{RL} = \infty, \text{R}_{\text{RV}} = 1\text{M}\Omega, \text{V}_{\text{reg}} = -2.6\text{V}$	_	75	120	μA
Current Consumption 2	I _{DD2}	Poff="L"note4)RL = ∞, R_{RV} = 1MΩ	_	60	100	μA
Output Impedance	R _{OUT}	$I_{OUT} = 20mA, C1 = C2 = C3 = 10\mu A$	-	150	200	Ω
Power Conversion Rate	P _{eff}	$I_{OUT} = 5mA,C1 = C2 = C3 = 10\mu A$	90	95	_	%
Line Regulation	ΔV_{reg}	-18V < V _{OUT} < -8V	_	0.2		%∕∨
	$\Delta V_{OUT} \bullet V_{reg}$	V_{reg} = -8V, RL = ∞				
Load Regulation	$\frac{\Delta V_{reg}}{\Delta I_{reg}}$	V_{OUT} = -15V, V_{reg} = -8V 0 < I _{reg} < 20mA	Ι	5.0	_	Ω
Output Saturation Resistance	R _{SAT}	$R_{SAT} = \Delta (V_{reg} - V_{OUT}) / \Delta I_{reg}$ 0 < I _{reg} < 20mA, RV = V _{DD}	Ι	8.0	_	Ω
Reference Voltage	V _{RV}		-2.3	-1.5	-1.0	V
Input Current 1	I _{IN1}	RV Terminal	_	-	1.0	μA
Input Current 2	IN2	Poff Terminal	-	_	2.0	μA
Switching Frequency	f _{sw}		—	2.5	—	kHz

Note3): To achieve the best operation, select the input capacitor (C_{IN}) with enough margin according to the stability of supply voltage.

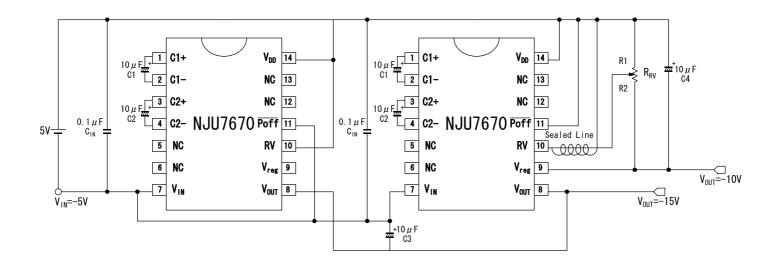
Note4): Excluding input current on R_{RV}


APPLICATION CIRCUITS (1)

(1-1) Tripler Operation

The IC may have a possibility not to operate properly with unstable supply voltage due to large transient current when the capacitor is charged or discharged.

The decoupling capacitor (C_{IN}) connect as close as possible to the IC.


(1-2) Doubler Operation

The IC may have a possibility not to operate properly with unstable supply voltage due to large transient current when the capacitor is charged or discharged.

The decoupling capacitor (C_{IN}) connect as close as possible to the IC.

APPLICATION CIRCUITS (2)

(2) Parallel Connection

* The output impedance Rout can be reduced by parallel connection.

* C3 is a stabilizing capacitor output for stabilized voltage.

* In the parallel connection, one stabilizing capacitor using is better way.

* The IC may have a possibility not to operate properly with unstable supply voltage due to large transient current when the capacitor is charged or discharged.

The decoupling capacitor (C_{IN}) connect as close as possible to the IC.

NJU7670

NJU7670 NJU7670 Output Voltage vs.Input Voltage Regulator Output Voltage vs.Input Voltage -20 -20 -18 -18 Regulator Output Voltage : Vreg (V) -16 -16 Output Voltage : Vo (V) -14 -14 -12 -12 -10 -10 -8 -8 -6 -6 -4 @:Ta=25°C -4 @:Ta=25°C -2 -2 0 0 0 -8 0 -8 -2 -4 -6 -2 -4 -6 Supply Voltage : V_{IN} (V) Supply Voltage : V_{IN} (V) NJU7670 NJU7670 Output Voltage vs.Regulator Output Current Output Voltage vs.Regulator Output Current -20 -20 -18 -18 -16 -16 Output Voltage : Vo (V) Output Voltage : Vo (V) -14 -14 -12 -12 -10 -10 -8 -8 -6 -6 -4 @:Ta=25°C -4 @:Ta=25°C V_{IN}=-5V V_{IN}=-5V -2 -2 0 0 0 5 10 15 20 0 5 10 15 20 Regulator Output Current : Ireg (mA) Regulator Output Current : Ireg (mA) NJU7670 Charge Pump Capacitor Frequency vs.Input Voltage 3.0 Charge Pump Capacitor Frequency : 2.5 2.0 f(kHz) 1.5 [CAUTION] 1.0 The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are @:Ta=25°C 0.5 described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. 0.0 0 -1 -2 -3 -4 -5

New Japan Radio Co., Ltd.

■ TYPICAL CHARACTERISTICS (CIRCUITS CONDITION : Tripler Operation + Voltage Regulator Operation)

Supply Voltage : V_{IN}(V)

- 7 -