: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NLAS3699B

Dual DPDT Ultra-Low Ron Switch

The NLAS3699B is a dual independent ultra-low R_{ON} DPDT analog switch. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output. The NLAS3699B can handle a balanced microphone/speaker/ring-tone generator in a monophone mode. The device contains a break-before-make feature.

Features

- Single Supply Operation
1.65 to $4.5 \mathrm{~V}_{\mathrm{CC}}$

Function Directly from LiON Battery

- Maximum Breakdown Voltage: 5.5 V
- Tiny $3 \times 3 \mathrm{~mm}$ QFN Pb-Free Package

Meet JEDEC MO-220 Specifications

- Low Static Power
- This is a $\mathrm{Pb}-$ Free Device*

Typical Applications

- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Four Unbalanced (Single-Ended) Switches
- Stereo Balanced (Push-Pull) Switching

Important Information

- ESD Protection:

HBM (Human Body Model) >8000 V
MM (Machine Model) $>400 \mathrm{~V}$

- Continuous Current Rating Through each Switch $\pm 300 \mathrm{~mA}$
- Conforms to: JEDEC MO-220, Issue H, Variation VEED-6
- Pin for Pin Compatible with STG3699

[^0]ON Semiconductor ${ }^{\circledR}$

http://onseml.com

QFN-16
DARKING
DIAGRAMS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Figure 1. Input Equivalent Circuit

PIN DESCRIPTION

QFN PIN \#	Symbol	Name and Function
$1,3,5,7,9,11,13,15$	1 S1 to 4S1, 1S2 to 4S2	Independent Channels
2,10	$1-2 \mathrm{~N}, 3-4 \mathrm{IN}$	Controls
$4,8,12,16$	D1 to D4	Common Channels
6	GND	Ground (V)
14	V CC	Positive Supply Voltage

TRUTH TABLE

IN	S1	S2
H	ON	OFF(*)
L	OFF(*)	ON

*High impedance.

NLAS3699B

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	Positive DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (V_{NO}, V_{NC}, or $\mathrm{V}_{\mathrm{COM}}$)	$-0.5 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+5.5$	V
$\mathrm{I}_{\text {anl1 }}$	Continuous DC Current from COM to NC/NO	± 300	mA
lanl-pk 1	Peak Current from COM to NC/NO, 10 duty cycle (Note 1)	± 500	mA
$\mathrm{I}_{\text {clmp }}$	Continuous DC Current into COM/NO/NC with respect to $\mathrm{V}_{\text {CC }}$ or GND	± 100	mA
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT	0 20 0 10	ns/V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Defined as $10 \% \mathrm{ON}, 90 \%$ off duty cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage		1.65	4.5	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage		GND	$\mathrm{V}_{\text {CC }}$	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (NC, NO, COM)		GND	$\mathrm{V}_{\text {CC }}$	V
T_{A}	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V}-2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}-4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	ns/V

NLAS3699B

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit		Unit
				$-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.6 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.7 \\ & 2.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.7 \\ & 2.2 \\ & 2.6 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Select Inputs		$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.6 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \\ & 0.7 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \\ & 0.7 \\ & 0.9 \end{aligned}$	V
I_{IN}	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	4.3	± 0.1	± 1.0	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	0	± 0.5	± 2.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (Note 2)	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	1.65 to 4.5	± 1.0	± 2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	$\mathrm{V}_{\text {cc }}$	Guaranteed Maximum Limit				Unit
				$-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$		$<85^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	
$\mathrm{R}_{\text {ON }}$	NC/NO On-Resistance (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.3 \end{aligned}$		$\begin{gathered} \hline 0.65 \\ 0.6 \\ 0.55 \end{gathered}$		$\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.70 \end{aligned}$	Ω
RFLAT	NC/NO On-Resistance Flatness (Notes 2, 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.15 \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.15 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match Between Channels (Notes 2 and 3)	$\begin{aligned} & \hline \mathrm{V}_{\text {IS }}=1.3 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=1.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=2.2 \mathrm{~V} ; \\ & \text { ICOM }=100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.05 \end{aligned}$	Ω
$\mathrm{I}_{\text {NC(OFF) }}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	NC or NO Off Leakage Current (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=4.0 \mathrm{~V} \end{aligned}$	4.3	-10	10	-100	100	nA
$\mathrm{I}_{\text {COM (ON }}$	COM ON Leakage Current (Note 2)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}} 0.3 \mathrm{~V}$ or 4.0 V with $\mathrm{V}_{\text {NO }}$ floating $\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} \text { or } 4.0 \mathrm{~V}$	4.3	-10	10	-100	100	nA

2. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
3. $\Delta R_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$ between nS 1 or nS 2 .
4. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	v_{cc}(V)	$\begin{aligned} & V_{\text {IS }} \\ & \text { (V) } \end{aligned}$	Guaranteed Maximum Limit					Unit
					$-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			50		60	ns
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			30		40	ns
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=3.0 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (Figure 2) } \end{aligned}$	3.0	1.5	2	15				ns

Typical @ 25, $\mathbf{V}_{\mathbf{C C}}=\mathbf{4 . 5} \mathbf{V}$			
C_{IN}	Control Pin Input Capacitance	7.0	pF
C_{SN}	SN Port Capacitance	72	pF
C_{D}	D Port Capacitance When Switch is Enabled	230	pF

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & \text { (V) } \end{aligned}$	$25^{\circ} \mathrm{C}$	Unit
				Typical	
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response (Figure 12)	$\mathrm{V}_{\text {IN }}$ centered between V_{CC} and $G N D$ (Figure 5)	1.65-4.5	20	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feed-through On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm} @ 100 \mathrm{kHz} \text { to } 50 \mathrm{MHz}$ V_{IN} centered between V_{CC} and GND (Figure 5)	1.65-4.5	-0.06	dB
VISO	Off-Channel Isolation (Figure 13)	$\begin{aligned} & \hline \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS} ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and } \operatorname{GND}(\text { Figure 5) } \end{aligned}$	1.65-4.5	-62	dB
Q	Charge Injection Select Input to Common I/O (Figure 8)	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC} \text { to }} \text { GND, } \mathrm{R}_{\mathrm{IS}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\text {OUT }} \text { (Figure 6) } \end{aligned}$	1.65-4.5	50	pC
THD	Total Harmonic Distortion THD + Noise (Figure 7)	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\text {gen }}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	4.5	0.01	\%
VCT	Channel-to-Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-62	dB

5. Off-Channel Isolation = $20 \log 10(\mathrm{Vcom} / \mathrm{Vno}), \mathrm{Vcom}=$ output, $\mathrm{Vno}=$ input to off switch.

Figure 2. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAS3699B

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth $(\mathrm{BW})=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 6. Charge Injection: (Q)

Figure 7. Total Harmonic Distortion Plus Noise Versus Frequency

Figure 8. Charge Injection versus $\mathrm{V}_{\text {is }}$

Figure 9. On-Resistance vs. COM Voltage

Figure 11. R_{ON} vs. V_{IN} vs. Temperature @ $\mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V}$

Figure 13. Off-Isolation vs. Frequency @ $\mathrm{V}_{\mathrm{Cc}}=1.65 \mathrm{~V}$ to 3.6 V

Figure 10. R $_{\text {ON }}$ vs. $\mathrm{V}_{\text {IN }}$ vs. Temperature $@ \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V}$

Figure 12. Bandwidth vs. Frequency @ $\mathrm{V}_{\mathrm{cc}}=1.65 \mathrm{~V}$ to 3.6 V

Figure 14. Phase Angle vs. Frequency @ $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 3.6 V

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature						
	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix	Package Type	Tape \& Reel Size ${ }^{\dagger}$
	NL	AS	$3699 B$	MN1	R2G	QFN (Pb-Free)	3000 Unit / Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

QFN-16 ($3 \times 3 \times 0.85 \mathrm{~mm}$)
CASE 485AE-01
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. OUTLINE MEETS JEDEC DIMENSIONS PER MO-220, VARIATION VEED-6.

	MILLIMETERS		
DIM	MIN	NOM	MAX
A	0.800	0.900	1.000
A1	0.000	0.025	0.050
A3	0.200 REF		
b	0.180	0.250	0.300
D	3.00 BSC		
D2	1.250	1.40	1.550
E	3.00 BSC		
E2	1.250	1.40	1.550
e	0.500 BSC		
K	0.200	--	
L	0.300	0.400	---

[^1]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderli@@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: *For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: ON Semiconductor and (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

