

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Voltage Single Supply Dual DPDT Analog Switch

The NLAS44599 is an advanced dual-independent CMOS double pole-double throw (DPDT) analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. This DPDT controls analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).

The device has been designed so the ON resistance (R_{ON}) is much lower and more linear over input voltage than RON of typical CMOS analog switches.

The channel select input is compatible with standard CMOS outputs. The channel select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage - input/output voltage mismatch, battery backup, hot insertion, etc.

The NLAS44599 can also be used as a quad 2-to-1 multiplexerdemultiplexer analog switch with two Select pins that each controls two multiplexer-demultiplexers.

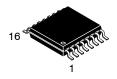
- Channel Select Input Over-Voltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break-Before-Make Circuitry
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- ESD Performance: Human Body Model; > 2000 V, Machine Model; > 200 V
- Chip Complexity: 158 FETs
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

QFN-16 **MN SUFFIX CASE 485G**



16 С **ALYW**

Current Part Marking

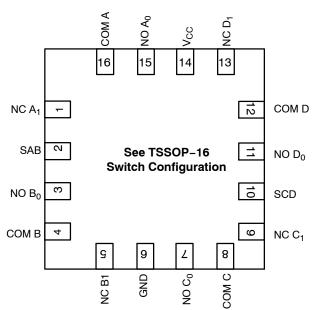
Previous Part Marking*

*Previous releases of this device may be marked as shown in this diagram.

16HHHHHHH **NLAS** 4459 **ALYW**

TSSOP-16 **DT SUFFIX** CASE 948F

1


= Assembly Location

L = Wafer Lot Υ = Year = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

QFN-16 PACKAGE

FUNCTION TABLE

Select AB or CD	On Channel
L	NC to COM
H	NO to COM

 Γ NC D₁

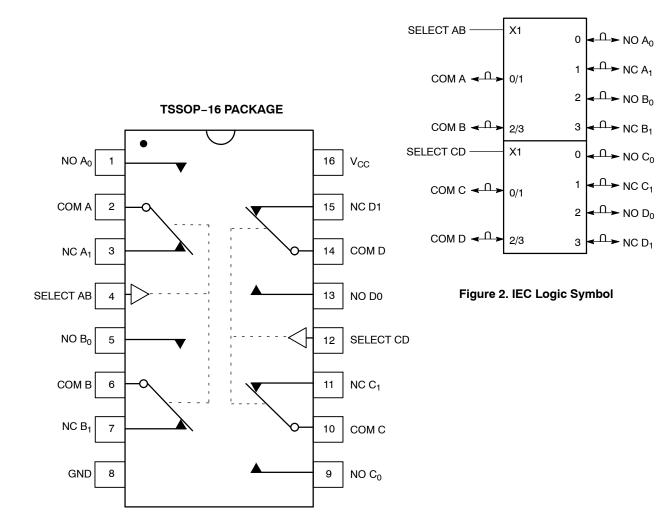


Figure 1. Logic Diagram

MAXIMUM RATINGS

Symbol	Pai	rameter	Value	Unit
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V
V _{IS}	Analog Input Voltage (V _{NO} or V _{COM})		$-0.5 \le V_{IS} \le V_{CC} + 0.5$	
V _{IN}	Digital Select Input Voltage		$-0.5 \leq V_I \leq +7.0$	V
I _{IK}	DC Current, Into or Out of Any Pin		±50	mA
P _D	Power Dissipation in Still Air	QFN-16 TSSOP-16	800 450	mW
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for	260	°C	
TJ	Junction Temperature Under Bias		+150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94-V0 (0.125 in)	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	2000 200 1000	V
I _{Latch-Up}	Latch-Up Performance A	Above V _{CC} and Below GND at 125°C (Note 4)	±300	mA
$\theta_{\sf JA}$	Thermal Resistance	QFN-16 TSSOP-16	80 164	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Tested to EIA/JESD22-A114-A.
- 2. Tested to EIA/JESD22-A115-A.
- 3. Tested to JESD22-C101-A.
- 4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage		2.0	5.5	V
V _{IN}	Digital Select Input Voltage		GND	5.5	V
V _{IS}	Analog Input Voltage (NC, NO, COM)		GND	V _{CC}	V
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise or Fall Time, SELECT V _{CC} : V _{CC} :	= 3.3 V ± 0.3 V = 5.0 V ± 0.5 V	0	100 20	ns/V

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

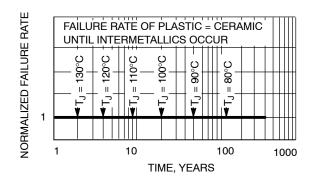


Figure 3. Failure Rate vs. Time Junction Temperature

NI AS44599

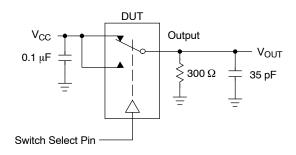
DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

				Guaran	teed Limi		
Symbol	Parameter	Condition	V _{CC}	-55°C to 25°C	<85°C	<125°C	Unit
V _{IH}	Minimum High-Level Input		2.0	1.5	1.5	1.5	V
	Voltage, Select Inputs		2.5	1.9	1.9	1.9	
			3.0	2.1	2.1	2.1	
			4.5	3.15	3.15	3.15	
			5.5	3.85	3.85	3.85	
V _{IL}	Maximum Low-Level Input		2.0	0.5	0.5	0.5	V
	Voltage, Select Inputs		2.5	0.6	0.6	0.6	
			3.0	0.9	0.9	0.9	
			4.5	1.35	1.35	1.35	
			5.5	1.65	1.65	1.65	
I _{IN}	Maximum Input Leakage Current	V _{IN} = 5.5 V or GND	5.5	±0.2	±2.0	±2.0	μΑ
l _{OFF}	Power Off Leakage Current, Select Inputs	V _{IN} = 5.5 V or GND	0	±10	±10	±10	μΑ
Icc	Maximum Quiescent Supply Current	Select and V _{IS} = V _{CC} or GND	5.5	4.0	4.0	8.0	μΑ

DC ELECTRICAL CHARACTERISTICS - Analog Section

				Guaranteed Limit			
Symbol	Parameter	Condition	V _{CC}	-55°C to 25°C	<85°C	<125°C	Unit
R _{ON}	Maximum "ON" Resistance (Figures 17 – 23)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{IS} = \text{GND to } V_{CC}$	2.5 3.0	85 45	95 50	105 55	Ω
	,	$I_{\text{IN}}I \leq 10.0 \text{ mA}$	4.5 5.5	30 25	35 30	40 35	
R _{FLAT (ON)}	ON Resistance Flatness (Figures 17 – 23)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{IN}I \le 10.0 \text{ mA}$ $V_{IS} = 1 \text{ V, 2 V, 3.5 V}$	4.5	4	4	5	Ω
I _{NC(OFF)} I _{NO(OFF)}	NO or NC Off Leakage Current (Figure 9)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{NO} \text{ or } V_{NC} = 1.0 \text{ V}_{COM} 4.5 \text{ V}$	5.5	1	10	100	nA
I _{COM(ON)}	COM ON Leakage Current (Figure 9)	$\begin{split} &V_{IN} = V_{IL} \text{ or } V_{IH} \\ &V_{NO} \text{ 1.0 V or 4.5 V with } V_{NC} \text{ floating or } \\ &V_{NO} \text{ 1.0 V or 4.5 V with } V_{NO} \text{ floating } \\ &V_{COM} = \text{1.0 V or 4.5 V} \end{split}$	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)


					Guaranteed Maximum Limit							
			v _{cc}	V _{IS}	- 55	5°C to 2	25°C	<85°C		< 125°C		
Symbol	Parameter	Test Conditions	(V)	(V)	Min	Тур*	Max	Min	Max	Min	Max	Unit
toN	Turn-On Time	$R_L = 300 \Omega, C_L = 35 pF$	2.5	2.0	5	23	35	5	38	5	41	ns
	(Figures 12 and 13)	(Figures 5 and 6)	3.0	2.0	5	16	24	5	27	5	30	
			4.5	3.0	2	11	16	2	19	2	22	
			5.5	3.0	2	9	14	2	17	2	20	
t _{OFF}	Turn-Off Time	$R_L = 300 \Omega, C_L = 35 pF$	2.5	2.0	1	7	12	1	15	1	18	ns
	(Figures 12 and 13)	(Figures 5 and 6)	3.0	2.0	1	5	10	1	13	1	16	
			4.5	3.0	1	4	6	1	9	1	12	
			5.5	3.0	1	3	5	1	8	1	11	
t _{BBM}	Minimum Break-Before-Make	V _{IS} = 3.0 V (Figure 4)	2.5	2.0	1	12		1		1		ns
	Time	$R_L = 300 \Omega, C_L = 35 pF$	3.0	2.0	1	11		1		1		
			4.5	3.0	1	6		1		1		
			5.5	3.0	1	5		1		1		

		Typical @ 25, V _{CC} = 5.0 V	25
C _{IN}	Maximum Input Capacitance, Select Input	8	pF
C _{NO} or C _{NC}	Analog I/O (switch off)	10	
C _{COM}	Common I/O (switch off)	10	
C _(ON)	Feedthrough (switch on)	20	

^{*}Typical Characteristics are at 25°C.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

			V _{CC}	Typical	
Symbol	Parameter	Condition	v	25°C	Unit
BW	Maximum On-Channel -3dB	V _{IN} = 0 dBm	3.0	145	MHz
	Bandwidth or Minimum Frequency Response (Figure 11)	V _{IN} centered between V _{CC} and GND	4.5	170	
	Tresponse (Figure 11)	(Figure 7)	5.5	175	
V _{ONL}	Maximum Feedthrough On Loss	V _{IN} = 0 dBm @ 100 kHz to 50 MHz	3.0	-3	dB
		V _{IN} centered between V _{CC} and GND	4.5	-3	
		(Figure 7)	5.5	-3	
V _{ISO}	Off-Channel Isolation (Figure 10)	f = 100 kHz; V _{IS} = 1 V RMS	3.0	-93	dB
		V _{IN} centered between V _{CC} and GND	4.5	-93	
		(Figure 7)	5.5	-93	
Q	Charge Injection Select Input to	V _{IN =} V _{CC to} GND, F _{IS} = 20 kHz			рC
	Common I/O (Figure 15)	$t_r = t_f = 3 \text{ ns}$	3.0	1.5	
		$R_{IS} = 0 \Omega$, $C_L = 1000 pF$	5.5	3.0	
		$Q = C_L * \Delta V_{OUT}$			
		(Figure 8)			
THD	Total Harmonic Distortion THD +	F_{IS} = 20 Hz to 100 kHz, R_L = Rgen = 600 Ω , C_L = 50 pF			%
	Noise (Figure 14)	$V_{IS} = 5.0 V_{PP}$ sine wave	5.5	0.1	
VCT	Channel-to-Channel Crosstalk	f = 100 kHz; V _{IS} = 1 V RMS			dB
		V _{IN} centered between V _{CC} and GND	5.5	-90	
		(Figure 7)	3.0	-90	

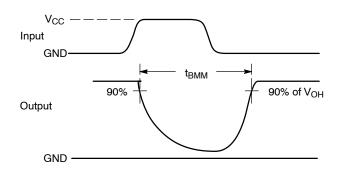
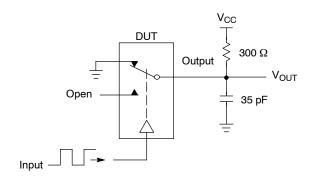



Figure 4. t_{BBM} (Time Break-Before-Make)

Figure 5. t_{ON}/t_{OFF}

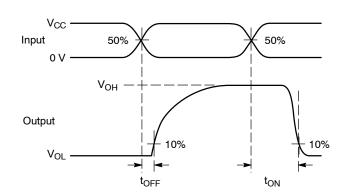


Figure 6. t_{ON}/t_{OFF}

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$V_{ISO} = Off Channel Isolation = 20 Log \left(\frac{V_{OUT}}{V_{IN}}\right)$$
 for V_{IN} at 100 kHz

 $V_{ONL} = On \ Channel \ Loss = 20 \ Log \ \left(\frac{V_{OUT}}{V_{IN}}\right) for \ V_{IN} \ at \ 100 \ kHz \ to \ 50 \ MHz$

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

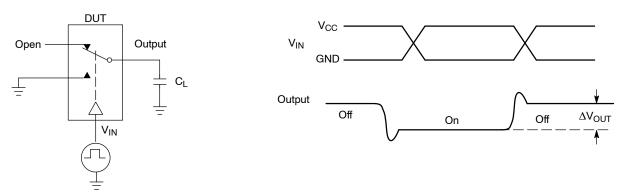


Figure 8. Charge Injection: (Q)

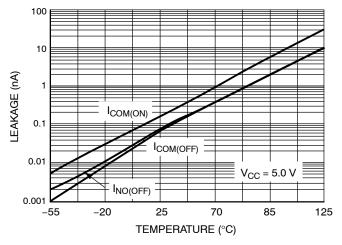
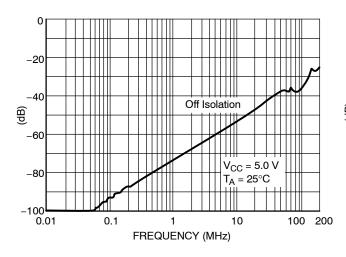



Figure 9. Switch Leakage vs. Temperature

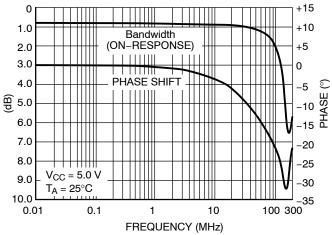
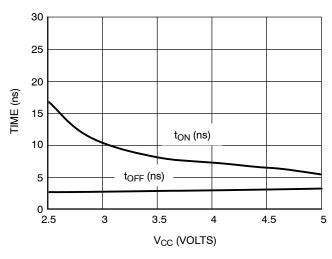
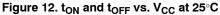




Figure 10. Off-Channel Isolation

Figure 11. Typical Bandwidth and Phase Shift

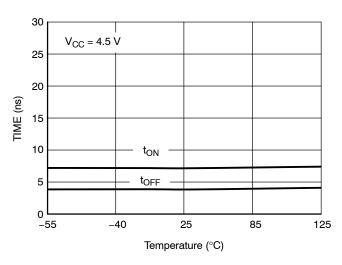


Figure 13. t_{ON} and t_{OFF} vs. Temp

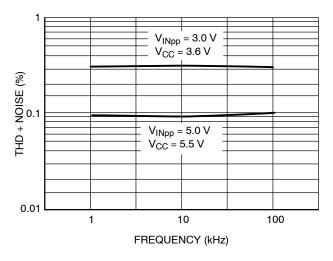
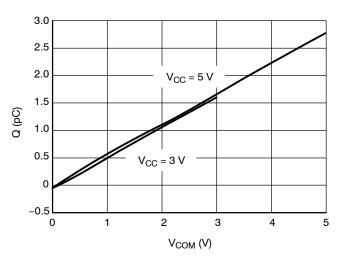
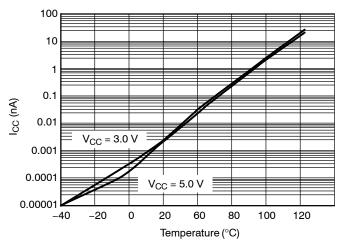
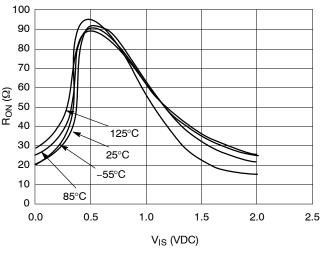


Figure 14. Total Harmonic Distortion Plus Noise vs. Frequency


Figure 15. Charge Injection vs. COM Voltage

100 $V_{CC} = 2.0 \text{ V}$ 80 60 Ron (Q) V_{CC} = 2.5 V 40 $V_{CC} = 3.0 \text{ V}$ V_{CC} = 4.0 V 20 V_{CC} = 5.5 V 0.0 1.0 2.0 3.0 4.0 5.0 6.0 V_{IS} (VDC)

Figure 16. I_{CC} vs. Temp, V_{CC} = 3 V & 5 V

Figure 17. R_{ON} vs. V_{CC} , Temp = 25°C

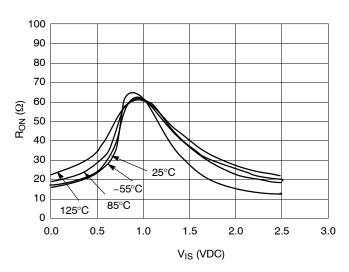
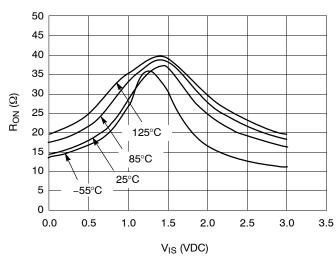



Figure 18. R_{ON} vs Temp, V_{CC} = 2.0 V

Figure 19. R_{ON} vs. Temp, V_{CC} = 2.5 V

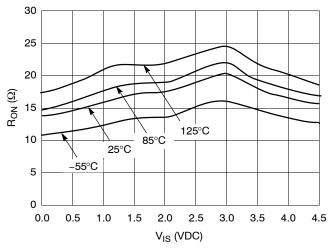
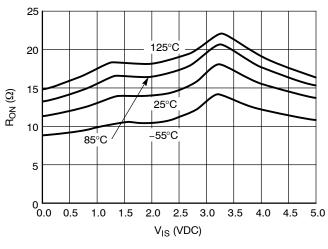



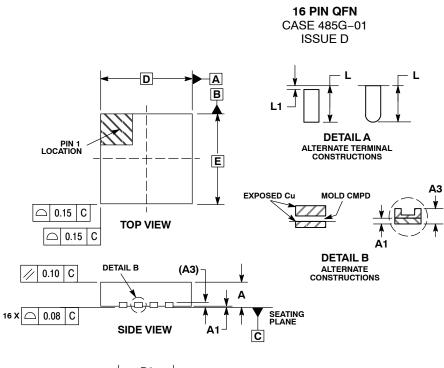
Figure 20. R_{ON} vs. Temp, V_{CC} = 3.0 V

Figure 21. R_{ON} vs. Temp, V_{CC} = 4.5 V

25 20 125°C 10 85°C -55°C 5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 V_{IS} (VDC)

Figure 22. R_{ON} vs. Temp, V_{CC} = 5.0 V

Figure 23. R_{ON} vs. Temp, $V_{CC} = 5.5 \text{ V}$


DEVICE ORDERING INFORMATION

		Devi	ce Nomenc	lature			
Device	Circuit Indicator	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Shipping [†]
NLAS44599DT	NL	AS	44599	DT		TSSOP-16*	96 / Unit Rail
NLAS44599DTR2	NL	AS	44599	DT	R2	TSSOP-16*	2500 / Tape & Reel
NLAS44599MN	NL	AS	44599	MN		QFN-16	124 Unit / Rail
NLAS44599MNG	NL	AS	44599	MN		QFN-16 (Pb-Free)	124 Unit / Rail
NLAS44599MNR2	NL	AS	44599	MN	R2	QFN-16	2500 / Tape & Reel
NLAS44599MNR2G	NL	AS	44599	MN	R2	QFN-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

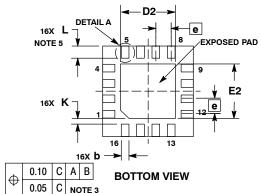
^{*}This package is inherently Pb-Free.

PACKAGE DIMENSIONS

NOTES:

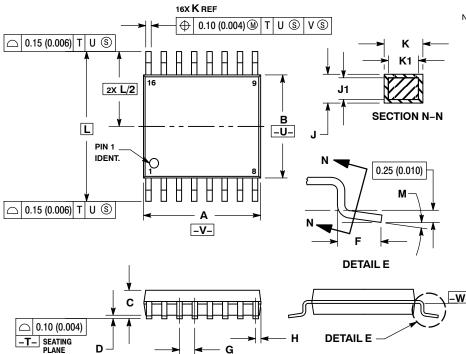
- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.


 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.

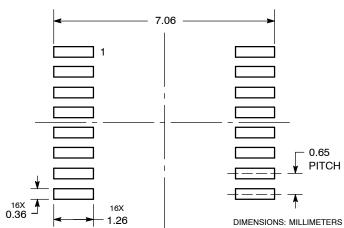
 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.


 5. L_{max} CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG

	MILLIMETERS							
DIM	MIN MA							
Α	0.80	1.00						
A1	0.00	0.05						
А3	0.20	REF						
b	0.18	0.30						
D	3.00	BSC						
D2	1.65	1.85						
Е	3.00	BSC						
E2	1.65	1.85						
Φ	0.50	BSC						
K	0.18	TYP						
۲	0.30	0.50						
L1	0.00	0.15						

PACKAGE DIMENSIONS

TSSOP-16 CASE 948F-01 **ISSUE B**


- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
 - EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
 - INTERLEAD FLASH OR PROTRUSION SI NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 - 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE

PETE		at datl Ieters	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0°	8°	0°	8°	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

USA/Canada

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative