imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Voltage Single Supply SPDT Analog Switch

The NLAS4599 is an advanced high speed CMOS single pole – double throw analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining low power dissipation. This switch controls analog and digital voltages that may vary across the full power–supply range (from V_{CC} to GND).

The device has been designed so the ON resistance (R_{ON}) is much lower and more linear over input voltage than R_{ON} of typical CMOS analog switches.

The channel select input is compatible with standard CMOS outputs.

The channel select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

- Channel Select Input Over-Voltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break-Before-Make Circuitry
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V
- Chip Complexity: 38 FETs
- Pb-Free Packages are Available

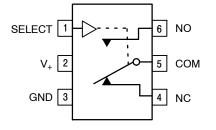
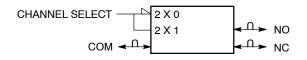
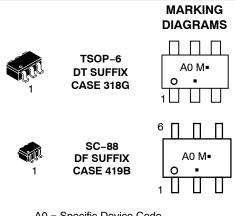


Figure 1. Pin Assignment




Figure 2. Logic Symbol

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

A0 = Specific Device Code M = Date Code • = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

FUNCTION TABLE

Select	ON Channel
L	NC
Н	NO

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage	9	-0.5 to +7.0	V
V _{IS}	Analog Input Voltage (V _{NO}	or V _{COM})	$-0.5 \le V_{IS} \le V_{CC} + 0.5$	V
V _{IN}	Digital Select Input Voltage		$-0.5 \leq V_{l} \leq +\ 7.0$	V
l _{IK}	DC Current, Into or Out of	Any Pin	±50	mA
P _D	Power Dissipation in Still A	ir SC-88 TSOP-6	200 200	mW
T _{STG}	Storage Temperature Rang	le	-65 to +150	°C
TL	Lead Temperature, 1mm fr	om Case for 10 seconds	260	°C
TJ	Junction Temperature Und	er Bias	150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	2000 200 N/A	V
I _{LATCH-UP}	Latch-Up Performance	Above V_{CC} and Below GND at 125°C (Note 4)	± 300	mA
θ_{JA}	Thermal Resistance	SC-88 TSOP-6	333 333	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Tested to EIA/JESD22-A114-A

2. Tested to EIA/JESD22-A115-A

3. Tested to JESD22-C101-A

4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristic	S	Min	Max	Unit
V _{CC}	DC Supply Voltage		2.0	5.5	V
V _{IN}	Digital Select Input Voltage		GND	5.5	V
V _{IS}	Analog Input Voltage (NC, NO, COM)		GND	V _{CC}	V
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise or Fall Time, SELECT	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0	100 20	ns/V

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

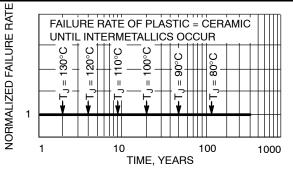


Figure 3. Failure Rate vs. Time Junction Temperature

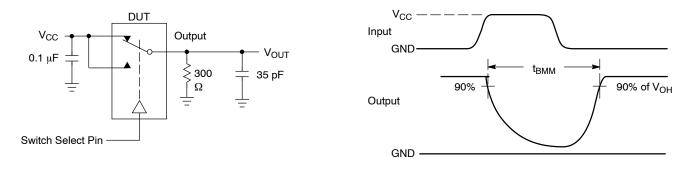
				Gua	aranteed Lin	nit	
Symbol	Parameter	Condition	V _{CC}	-55 to 25°C	<85°C	<125°C	Unit
VIH	Minimum High–Level		2.0	1.5	1.5	1.5	V
	Input Voltage, Select		2.5	1.9	1.9	1.9	
	Input		3.0	2.1	2.1	2.1	
			4.5	3.15	3.15	3.15	
			5.5	3.85	3.85	3.85	
V _{IL}	Maximum Low-Level		2.0	0.5	0.5	0.5	V
	Input Voltage, Select		2.5	0.6	0.6	0.6	
	Input		3.0	0.9	0.9	0.9	
			4.5	1.35	1.35	1.35	
			5.5	1.65	1.65	1.65	
I _{IN}	Maximum Input Leakage Current, Select Input	V _{IN} = 5.5 V or GND	5.5	<u>+</u> 0.1	<u>+</u> 1.0	<u>+</u> 1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or GND	0	±10	±10	±10	μΑ
ICC	Maximum Quiescent Supply Current	Select and $V_{IS} = V_{CC}$ or GND	5.5	1.0	1.0	2.0	μΑ

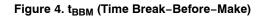
DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

DC ELECTRICAL CHARACTERISTICS – Analog Section

				Gua	ranteed Lin	nit	
Symbol	Parameter	Condition	V _{CC}	–55 to 25°C	<85°C	<125°C	Unit
R _{ON}	Maximum "ON" Resistance (Figures 17 – 23)	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IL} \text{ or } V_{IH} \\ V_{IS} = GND \text{ to } V_{CC} \\ I_{IN}I \leq 10.0 \text{ mA} \end{array}$	2.5 3.0 4.5 5.5	85 45 30 25	95 50 35 30	105 55 40 35	Ω
R _{FLAT} (ON)	ON Resistance Flatness (Figures 17 – 23)	$\label{eq:VIN} \begin{split} V_{IN} &= V_{IL} \text{ or } V_{IH} \\ I_{IN} I &\leq 10.0 \text{ mA} \\ V_{IS} &= 1V, 2V, 3.5V \end{split}$	4.5	4	4	5	Ω
ΔR _{ON} (ON)	ON Resistance Match Between Channels	$\label{eq:VIN} \begin{split} V_{IN} &= V_{IL} \text{ or } V_{IH} \\ I_{IN}I &\leq 10.0 \text{ mA} \\ V_{NO} \text{ or } V_{NC} &= 3.5 \text{ V} \end{split}$	4.5	2	2	3	Ω
I _{NC(OFF)} I _{NO(OFF)}	NO or NC Off Leakage Current (Figure 9)	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{NO} \text{ or } V_{NC} = 1.0 V_{COM} 4.5 \text{V}$	5.5	1	10	100	nA
I _{COM(ON})	COM ON Leakage Current (Figure 9)	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IL} \mbox{ or } V_{IH} \\ V_{NO} \ 1.0 \ V \mbox{ or } 4.5 \ V \ \mbox{ with } V_{NC} \\ \mbox{floating or} \\ V_{NO} \ 1.0 \ V \ \mbox{ or } 4.5 \ V \ \mbox{ with } V_{NO} \\ \mbox{floating} \\ V_{COM} = \ 1.0 \ V \ \mbox{ or } 4.5 \ V \end{array}$	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns)


						Guaran	teed Ma	ax Limi	t			
			v_{cc}	VIS	-5	55 to 25	°C	<8	5°C	<12	5°C	
Symbol	Parameter	Test Conditions	(V)	(V)	Min	Тур*	Max	Min	Max	Min	Max	Unit
t _{ON}	Turn-On Time (Figures 12 and 13)	R_L = 300 Ω,C_L = 35 pF (Figures 5 and 6)	2.5 3.0 4.5 5.5	2.0 2.0 3.0 3.0	5 5 2 2	23 16 11 9	28 21 16 14	5 5 2 2	30 25 20 20	5 5 2 2	30 25 20 20	ns
t _{OFF}	Turn-Off Time (Figures 12 and 13)	R_L = 300 Ω,C_L = 35 pF (Figures 5 and 6)	2.5 3.0 4.5 5.5	2.0 2.0 3.0 3.0	1 1 1 1	7 5 4 3	12 10 9 8	1 1 1 1	15 15 12 12	1 1 1 1	15 15 12 12	ns
t _{BBM}	Minimum Break-Before-Make Time	V_{IS} = 3.0 V (Figure 4) R _L = 300 Ω , C _L = 35 pF	2.5 3.0 4.5 5.5	2.0 2.0 3.0 3.0	1 1 1 1	12 11 6 5		1 1 1		1 1 1		ns


*Typical Characteristics are at 25°C.

		Typical @ 25, VCC = 5.0 V	
$\begin{array}{c} C_{\rm IN} \\ C_{\rm NO} \text{ or } C_{\rm NC} \\ C_{\rm COM} \\ C_{\rm (ON)} \end{array}$	Maximum Input Capacitance, Select Input Analog I/O (switch off) Common I/O (switch off) Feedthrough (switch on)	8 10 10 20	pF

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

			v _{cc}	Typical	
Symbol	Parameter	Condition	(Ň)	25°C	Unit
BW	Maximum On–Channel –3dB Bandwidth or Minimum Frequency Response (Figure 10)	$V_{IN} = 0 \text{ dBm}$ V_{IN} centered between V_{CC} and GND (Figure 7)	3.0 4.5 5.5	170 200 200	MHz
V _{ONL}	Maximum Feedthrough On Loss	V_{IN} = 0 dBm @ 100 kHz to 50 MHz V_{IN} centered between V_{CC} and GND (Figure 7)	3.0 4.5 5.5	-3 -3 -3	dB
V _{ISO}	Off-Channel Isolation (Figure 10)	f = 100 kHz; V_{IS} = 1 V RMS V_{IN} centered between V_{CC} and GND (Figure 7)	3.0 4.5 5.5	-93 -93 -93	dB
Q	Charge Injection Select Input to Common I/O (Figure 15)	$ \begin{array}{l} V_{IN} = V_{CC \ to} \ GND, \ F_{IS} = 20 \ \text{kHz} \\ t_r = t_f = 3 \ \text{ns} \\ R_{IS} = 0 \ \Omega, \ C_L = 1000 \ \text{pF} \\ Q = C_L \ast \Delta V_{OUT} \\ (Figure \ 8) \end{array} $	3.0 5.5	1.5 3.0	рС
THD	Total Harmonic Distortion THD + Noise (Figure 14)	F_{IS} = 20 Hz to 100 kHz, R_L = Rgen = 600 $\Omega,$ C_L = 50 pF V_{IS} = 5.0 V_{PP} sine wave	5.5	0.1	%

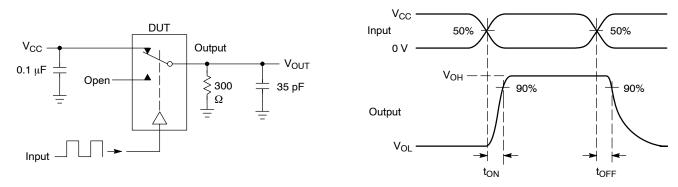
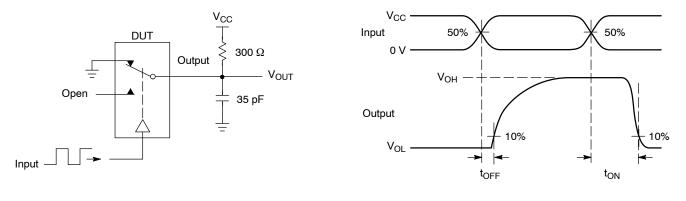
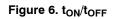
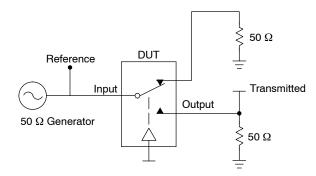
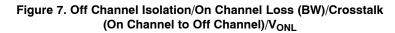
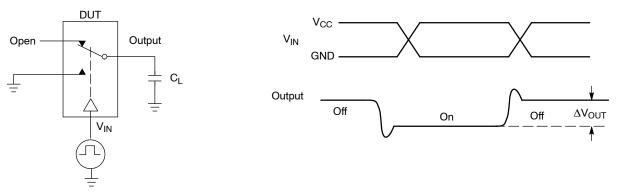





Figure 5. t_{ON}/t_{OFF}





Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$\begin{split} V_{ISO} &= \text{Off Channel Isolation} = 20 \text{ Log } \left(\frac{V_{OUT}}{V_{IN}} \right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz} \\ V_{ONL} &= \text{On Channel Loss} = 20 \text{ Log } \left(\frac{V_{OUT}}{V_{IN}} \right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz} \text{ to } 50 \text{ MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

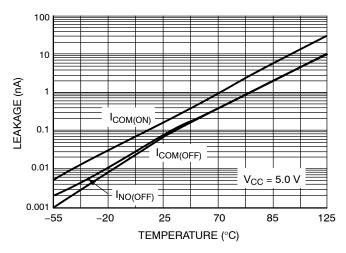
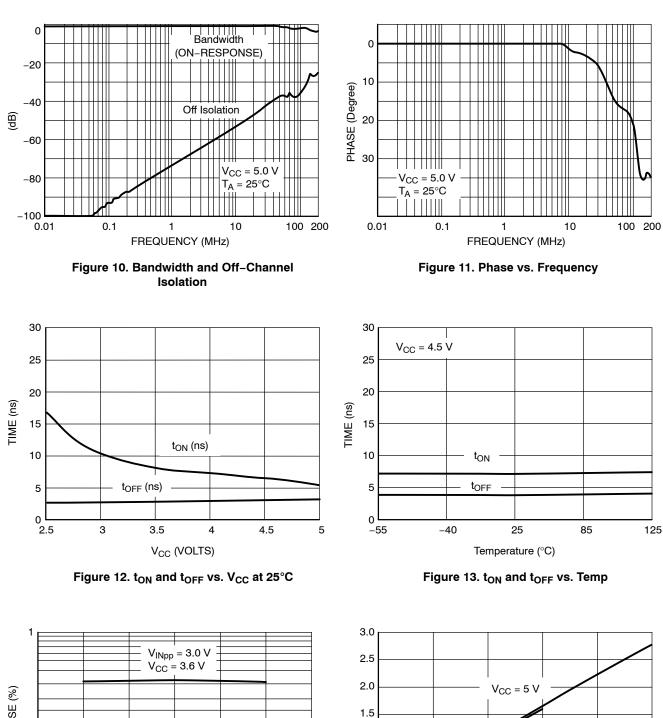
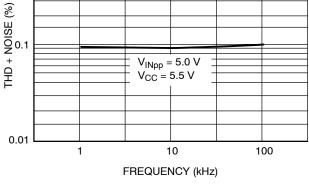
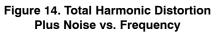





Figure 9. Switch Leakage vs. Temperature

V_{COM} (V) Figure 15. Charge Injection vs. COM Voltage

3

5

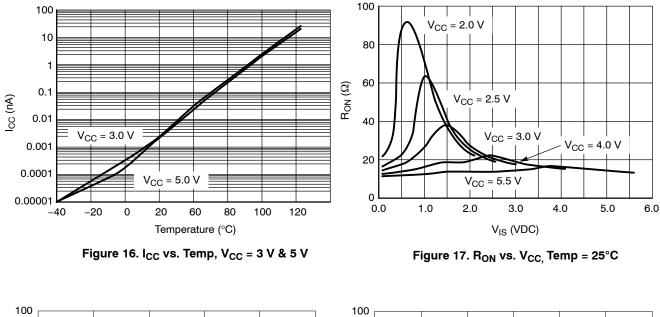
4

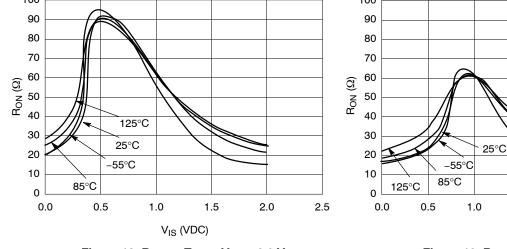
 $V_{CC} = 3 V$

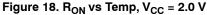
2

Q (pC)

1.0


0.5


0


0

1

-0.5

50

45

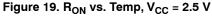
40 35

30

25

20

15

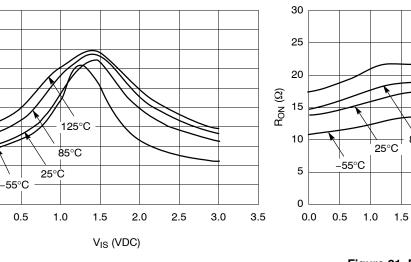

10

5

0

0.0

Ron (Q)


V_{IS} (VDC)

1.5

2.0

2.5

3.0

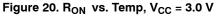


Figure 21. R_{ON} vs. Temp, V_{CC} = 4.5 V

V_{IS} (VDC)

125°C

2.5

3.0

3.5

4.0

4.5

85°C

2.0

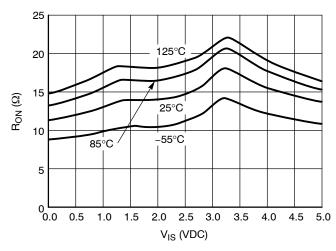


Figure 22. R_{ON} vs. Temp, V_{CC} = 5.0 V

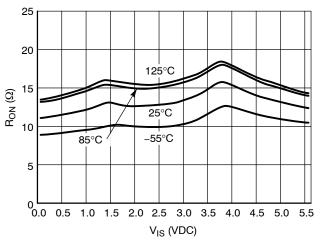
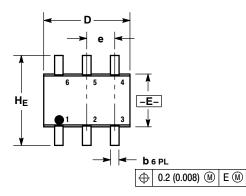


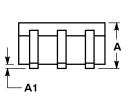
Figure 23. R_{ON} vs. Temp, V_{CC} = 5.5 V

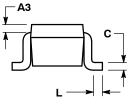

ORDERING INFORMATION

		Device Nom	nenclature			
Device	Circuit Indicator	Technology	Device Function	Suffix	Package	Shipping [†]
NLAS4599DFT2	NL	AS	DF	T2	SC-88	3000 / Tape & Reel
NLAS4599DFT2G	NL	AS	DF	T2G	SC-88 (Pb-Free)	3000 / Tape & Reel
NLAS4599DTT1	NL	AS	DT	T1	TSOP-6	3000 / Tape & Reel
NLAS4599DTT1G	NL	AS	DT	T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel
NLVAS4599DFT2	NL	AS	DF	T2	SC-88	3000 / Tape & Reel
NLVAS4599DFT2G	NL	AS	DF	T2G	SC-88 (Pb-Free)	3000 / Tape & Reel
NLVAS4599DTT1G	NL	AS	DT	T1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

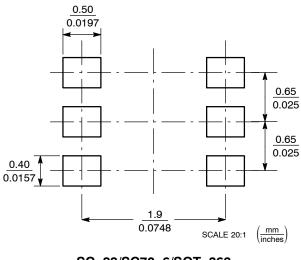
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE W**

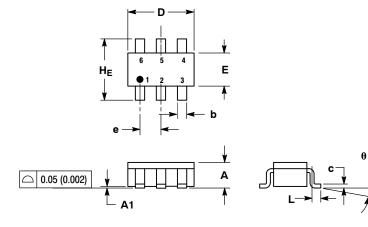


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.


υ.	4190	-01	ODGOLL	V STANL	15

	MIL	LIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A3		0.20 RE	F	(0.008 RI	EF	
b	0.10	0.21	0.30	0.004	0.008	0.012	
С	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
Е	1.15	1.25	1.35	0.045	0.049	0.053	
е	(0.65 BS	С	0	.026 BS	С	
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	2.00	2.10	2.20	0.078	0.082	0.086	

SOLDERING FOOTPRINT*

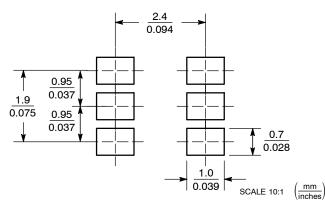


SC-88/SC70-6/SOT-363

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 **ISSUE S**



NOTES: 1. DIMENSIONING AND TOLERANCING PER

- DIMENSIONING AND TOLEHANCING PER ANSI Y145M, 1982. CONTROLLING DIMENSION: MILLIMETER. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF 3.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 4

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.38	0.50	0.010	0.014	0.020
С	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.75	3.00	0.099	0.108	0.118
θ	0°	-	10°	0°	-	10°

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitations special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC does not convey any license under its patent rights or the rights of others. SCILIC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

For additional information, please contact your local Sales Representative