: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NLAS4717

4.5 Ω High Bandwidth, Dual SPDT Analog Switch

The NLAS4717 is an advanced CMOS analog switch fabricated in sub-micron silicon gate CMOS technology. The device is a dual independent Single Pole Double Throw (SPDT) switch featuring two low $\mathrm{R}_{\mathrm{DS}(\text { on) }}$ of 4.5Ω at 3.0 V .

The device also features guaranteed Break-Before-Make (BBM) switching, assuring the switches never short the driver.

The NLAS4717 is available in two small size packages:

- Micro10
$3.0 \times 5.0 \mathrm{~mm}$
- Flip-Chip-10: $2.0 \times 1.5 \mathrm{~mm}$

Features

- Low $\mathrm{R}_{\mathrm{DS}(\text { on) }}: 4.5 \Omega$ @ 3.0 V
- Matching Between the Switches $\pm 0.5 \Omega$
- Wide Low Voltage Range: 1.8 V to 5.5 V
- High Bandwidth > 40 MHz
- 1.65 V to 5.5 V Operating Range
- Low Threshold Voltages on Pins 4 and 8 (CTRL Pins)
- Ultra-Low Charge Injection $\leq 6.0 \mathrm{pC}$
- Low Standby Current $-\mathrm{I}_{\mathrm{CC}}=1.0 \mathrm{nA}(\mathrm{Max}) @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- OVT* on Pins 4 and 8 (CTRL Logic Pins)
- Pb-Free Packages are Available

Typical Applications

- Cell Phones
- PDAs
- MP3s
- Digital Still Cameras

Important Information

- ESD Protection:

$$
\mathrm{HBM}=2000 \mathrm{~V}, \mathrm{MM}=200 \mathrm{~V}
$$

- Latchup Max Rating: 200 mA (Per JEDEC EIA/JESD78)
- Pin-to-Pin Compatible with MAX4717

*OVT

- Overvoltage Tolerance (OVT) specific pins to operate higher than normal supply voltages, with no damage to the devices or to signal integrity.

ON Semiconductor

http://onsemi.com
MARKING
DIAGRAMS

FUNCTION TABLE

IN_	NO_	NC $_{-}$
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION

Device	Package	Shipping †
NLAS4717FCT1	Flip-Chip-10	$3000 /$ Tape \& Reel
NLAS4717FCT1G	Flip-Chip-10 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS4717MR2	Micro10	$4000 /$ Tape \& Reel
NLAS4717MR2G	Micro10 (Pb-Free)	$4000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. Device Circuit Diagrams and Pin Configurations

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{+}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage ($\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, or $\mathrm{V}_{\mathrm{COM}}$) (Note 1)	$-0.5 \leq \mathrm{V}_{\mathrm{IS}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{I}} \leq+7.0$	V
I_{IK}	DC Current, Into or Out of Any Pin (Continuous)	± 100	mA
I_{PK}	Peak Current (10\% Duty Cycle)	± 200	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Signal voltage on NC, NO, and COM exceeding VCC or GND are clamped by the internal diodes. Limit forward diode current to maximum current rating.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{+}	DC Supply Voltage	1.8	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	GND	5.5	V
$\mathrm{~V}_{\text {IS }}$	Analog Input Voltage (NC, NO, COM)	GND	V_{CC}	V
T_{A}	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	100

ANALOG SWITCH DC CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc} (V)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Max	
V_{IH}	Input Logic High Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 1.65 \text { to } 2.2 \\ 2.7 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \times 0.55 \\ \mathrm{~V}_{\mathrm{CC}} \times 0.5 \\ 2.0 \end{gathered}$	-	V
$\mathrm{V}_{\text {IL }}$	Input Logic Low Voltage	$\begin{gathered} \mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\text {CC }}-0.1 \mathrm{~V} \\ \mathrm{I}_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 1.65 \text { to } 2.2 \\ 2.7 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \times 0.2 \\ \mathrm{~V}_{\mathrm{CC}} \times 0.2 \\ 0.8 \end{gathered}$	V
1 IN	Input Leakage Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {CC }}$ or GND	5.0	-100	+100	nA
V_{CC}	Power Supply Range	All	-	1.65	5.5	V
I_{CC}	Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \mathrm{l} \text { OUT }=0 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & 1.8 \\ & 3.3 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IS }}$	Analog Signal Range	Key parameter	-	0	V_{CC}	V

ANALOG SWITCH CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
R_{ON}	ON Resistance (Note 2)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$	3.0	-		4.5	Ω
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$	5.0	-		3.5	
$\Delta \mathrm{R}_{\text {ON }}$	ON Resistance Match Between Channels (Note 2 and 3)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$	3.6	-	0.1	0.4	Ω
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$	5.5				
RFLAT[ON]	ON Resistance Flatness (Note 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0	-		1.5	Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	5.5	-		1.36	
$\mathrm{I}_{\text {No_[OFF] }}$ INC_[OFF]	$\mathrm{NO}_{-}, \mathrm{NC}_{-}$ Off-Leakage Current (Note 5)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{gathered}$	3.6	-1.0	0.01	+1.0	nA
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \end{gathered}$	5.5	-1.0	0.01	+1.0	
$\mathrm{I}_{\text {Com_[ON] }}$	COM_ On-Leakage Current (Note 5)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{gathered}$	3.6	-2.0	0.01	+2.0	nA
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \end{gathered}$	5.5	-2.0	0.01	+2.0	

ANALOG SWITCH AC CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
ton	Turn-On Time	$\begin{gathered} \mathrm{V}_{\mathrm{NC}_{-}}, \mathrm{V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IN}[\mathrm{X}]}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$	1.8 to 5.5	-	-	30	nS
toff	Turn-Off Time	$\begin{gathered} \hline \mathrm{V}_{\mathrm{NC}_{-},} \mathrm{V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IN}[\mathrm{X}]}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{gathered}$	1.8 to 5.5	-	-	40	nS
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time Delay (Note 5)	$\begin{gathered} \mathrm{V}_{\mathrm{NC}_{-}}, \mathrm{V}_{\mathrm{NO}_{-}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	-	-	8.0	-	nS
tskew	Skew (Note 5)	$\mathrm{R}_{\mathrm{S}}=39 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	-	0.15	2.0	nS

2. R R_{ON} characterized for V_{CC} range (1.65 V to 5.5 V).
3. $\Delta R_{O N}=R_{O N}(M A X)-R_{O N}(M I N)$.
4. $R_{F L A T I O N]}=R_{O N}(M A X)-R_{O N}(M I N)$, measured over $V_{C C}$ range.
5. Guaranteed by design.

ANALOG SWITCH APPLICATION CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
Q	Charge Injection	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ \mathrm{R}_{\mathrm{In}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF} \\ \mathrm{Q}=\mathrm{C}_{\mathrm{L}}-\Delta \mathrm{V}_{\text {OUT }} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	9.0			pC
VISO	Off-Isolation	$\begin{gathered} \mathrm{f}=10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}_{-}}=1.0 \mathrm{Vp-p} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \end{gathered}$	1.65 to 5.5	-50			dB
		$\begin{gathered} \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{~V}_{\text {NO_- }}, \mathrm{V}_{\text {NC_- }}=1.0 \mathrm{Vp-p} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \end{gathered}$		-75			
VCT	Cross-Talk	$\begin{gathered} \mathrm{f}=10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{NO} \mathcal{L},} \mathrm{~V}_{\mathrm{NC}_{-}}=1.0 \mathrm{Vp-p} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} \end{gathered}$	1.65 to 5.5	-80			dB
		$\begin{gathered} \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{NO}}^{-} \end{gathered}, \mathrm{V}_{\mathrm{NC}_{-}}=1.0 \mathrm{Vp-p}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF} .$		-110			
BW	On-Channel -3.0 db Bandwidth	$\begin{gathered} \text { Signal }=0 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5.0 \mathrm{pF} \end{gathered}$	1.8 to 5.0	40			MHz
THD	Total Harmonic Distortion	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=2.0 \mathrm{Vp-p,} \\ \mathrm{RL}=600 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	-	0.02			\%
$\mathrm{C}_{\text {NO_[OFF] }}$ $\mathrm{C}_{\text {NC_[OFF] }}$	$\begin{gathered} \text { NO_, NC_- } \\ \text { OFF-Capacitance } \end{gathered}$	$\mathrm{F}=10 \mathrm{MHz}$	-	30			pF
$\begin{aligned} & \mathrm{C}_{\mathrm{NO} \text { _[ON] }} \\ & \mathrm{C}_{\mathrm{NC} \text { _[ON] }} \end{aligned}$	NO_, NC_ ON-Capacitance	$\mathrm{F}=10 \mathrm{MHz}$	-	110			pF

Figure 2. Low $\mathrm{R}_{\mathrm{DS}(\mathrm{on})} @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 4. Delta $R_{\mathrm{DS}(o n)} @ \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V}$

Figure 3. Low $\mathrm{R}_{\mathrm{DS}(\mathrm{on})} @ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 5. Delta $R_{\mathrm{DS}(o n)} @ \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V}$

Figure 6. Charge Injection

Figure 7. Total Harmonic Distortion

Figure 8. Frequency Response

Figure 9. Bandwidth and Phase

Figure 10. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 11. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 12. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\mathrm{ISO}}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$V_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)$ for $V_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3.0 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 13. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

Figure 14. Charge Injection: (Q)

PACKAGE DIMENSIONS

10 PIN FLIP-CHIP

CASE 489AA-01 ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING

PER ASME Y14.5M 1994
2. CONTROLLING DIMENSION

CONTROLLING
3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS

DIM	MILLIMETERS	
	MIN	MAX
A	---	0.650
A1	0.210	0.270
A2	0.280	0.380
D	1.965 BSC	
E	1.465 BSC	
b	0.250	0.350
e	0.50	BSC
D1	1.50	BSC
E1	1.00	BSC

PACKAGE DIMENSIONS

Micro10
CASE 846B-03
ISSUE D

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION "A" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION "B" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. 846B-01 OBSOLETE. NEW STANDARD 846B-02

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	2.90	3.10	0.114	0.122		
B	2.90	3.10	0.114	0.122		
C	0.95	1.10	0.037	0.043		
D	0.20	0.30	0.008			
G	0.50		BSC	0.020		BSC
H	0.05	0.15	0.002	0.006		
J	0.10	0.21	0.004	0.008		
K	4.75	5.05	0.187	0.199		
L	0.40	0.70	0.016	0.028		

SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (011 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

