imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Triple SPDT 1.0 Ω R_{ON} Switch

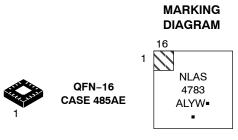
The NLAS4783 is a triple independent ultra-low R_{ON} SPDT analog switch with ENABLE. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output. The NLAS4783 can handle a balanced microphone/speaker/ring-tone generator in a monophone mode. The device contains a break-before-make feature.

Features

- Single Supply Operation
 - 1.65 to 3.6 V V_{CC}
- Tiny 3 x 3 mm 16–Pin QFN Package Meets JEDEC MO–220 Specifications
- Low Static Power
- OVT on Logic Address and Enable Inputs
- This is a Pb-Free Device*

Typical Applications

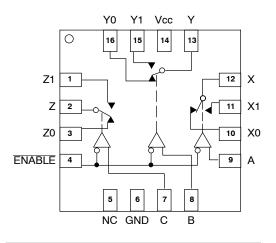
- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Three Unbalanced (Single-Ended) Switches
- Stereo Balanced (Push-Pull) Switching


Important Information

- ESD Protection:
 - Human Body Model (HBM) > 8000 V Machine Model (MM) > 400 V
- Ringtone-Chip/Amplifier Switching
- Continuous Current Rating Through each Switch ±300 mA
- Conforms to: JEDEC MO-220, Issue H, Variation VEED-6
- Pin-for-Pin Compatible with MAX4783

ON Semiconductor®

http://onsemi.com

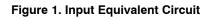

A = Assembly Location

- L = Wafer Lot
- Y = Year
- W = Work Week

= Pb–Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Semiconductor Components Industries, LLC, 2008 July, 2008 – Rev. 3

PIN FUNCTION DESCRIPTION

QFN PIN #	Symbol	Description
15	Y1	Analog Switch Y Normally Open Input
16	Y0	Analog Switch Y Normally Closed Input
1	Z1	Analog Switch Z Normally Open Input
2	Z	Analog Switch Z Output
3	Z0	Analog Switch Z Normally Closed Input
4	ENABLE	Digital Enable Input. Normally connect to GND. Drive to logic high to set all switches off.
5	NC	No Connection. Not internally connected.
6	GND	Ground
7	С	Digital Address C Input
8	В	Digital Address B Input
9	А	Digital Address A Input
10	X0	Analog Switch X Normally Closed Input
11	X1	Analog Switch X Normally Open Input
12	Х	Analog Switch X Output
13	Y	Analog Switch Y Output
14	V _{CC}	Positive Analog and Digital Supply Voltage Input

		Select Input				
Enable Input	С	В	А			
н	x	Х	х	All Switches Open		
L	L	L	L	X–X0 Y–Y0 Z–Z0		
L	L	L	Н	X-X1 Y-Y0 Z-Z0		
L	L	н	L	X-X0 Y-Y1 Z-Z0		
L	L	н	н	X–X1 Y–Y1 Z–Z0		
L	н	L	L	X–X0 Y–Y0 Z–Z1		
L	н	L	н	X–X1 Y–Y0 Z–Z1		
L	н	н	L	X–X0 Y–Y1 Z–Z1		
L	н	н	Н	X-X1 Y-Y1 Z-Z1		

TRUTH TABLE/SWITCH PROGRAMMING

1. Input and output pins are identical and interchangeable. Both pins can be considered input or output. Bidirectional signal pass.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage	-0.5 to +4.6	V
V _{IS}	Analog Input Voltage (V _{NO} , V _{NC} , or V _{COM})	-0.5 to V _{CC}	V
V _{IN}	Digital Select Input Voltage	-0.5 to +4.6	V
I _{anl1}	Continuous DC Current from COM to NC/NO	± 300	mA
l _{anl-pk 1}	Peak Current from COM to NC/NO, 10 Duty Cycles (Note 2)	±500	mA
I _{clmp}	Continuous DC Current into COM/NC/NO with Respect to V_{CC} or GND	±100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.2. Defined as 10% ON, 90% off duty cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage			3.6	V
V _{IS}	Analog Input Voltage (V_{NO} , V_{NC} , or V_{COM})			V _{CC}	V
V _{IN}	Digital Select Input Voltage			V _{CC}	V
T _A	Operating Temperature Range	- 40	85	°C	
t _r , t _f	Input Rise or Fall Time, SELECT	V _{CC} = 1.6–2.7 V V _{CC} = 3.0–3.6 V	-	20 10	ns/V

				Guaranteed Limit		
Symbol	Parameter	Condition	V _{cc}	-40°C to 25°C	<85°C	Unit
V _{IH}	Minimum High-Level Input Voltage, Select Inputs		1.65 2.7 3.6	1.0 1.4 1.8	1.0 1.4 1.8	V
V _{IL}	Maximum Low-Level Input Voltage, Select Inputs		1.65 2.7 3.6	0.4 0.5 0.6	0.4 0.5 0.6	V
I _{IN}	Maximum Input Leakage Current, Select Inputs	V _{IN} = 3.6 V or GND	3.6	± 0.1	± 1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 3.6 V or GND	0	±0.5	±2.0	μA
Icc	Maximum Quiescent Supply Current (Note 3)	Select and $V_{IS} = V_{CC}$ or GND	1.65 to 3.6	± 1.0	± 2.0	μΑ

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

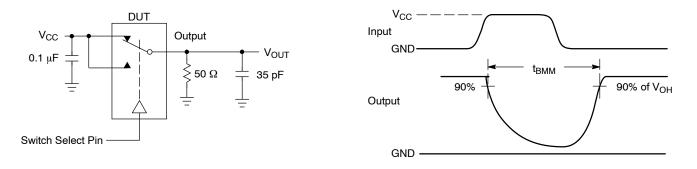
DC ELECTRICAL CHARACTERISTICS – Analog Section

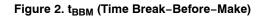
				Guara	Inteed Ma	aximum	Limit	
				-40°C to 25°C		<85°C		
Symbol	Parameter	Condition	V _{cc}	Min	Max	Min	Max	Unit
R _{ON}	NC/NO On-Resistance (Note 3)	$ \begin{array}{l} V_{IN} \leq V_{IL} \mbox{ or } V_{IN} \geq V_{IH} \\ V_{IS} = GND \mbox{ to } V_{CC} \\ I_{IN}I \leq 100 \mbox{ mA} \end{array} $	2.7 - 3.6		1.0		1.2	Ω
R _{FLAT}	NC/NO On-Resistance Flatness (Notes 3, 5)	$I_{COM} = 100 \text{ mA}$ $V_{IS} = 0 \text{ to } V_{CC}$	2.7 – 3.6		0.2		0.2	Ω
ΔR_{ON}	On-Resistance Match Between Channels (Notes 3 and 4)	V _{IS} = 1.3 V; I _{COM} = 100 mA	2.7 – 3.6		0.4		0.6	Ω
I _{NC(OFF)} I _{NO(OFF)}	NC or NO Off Leakage Current (Note 3)	$ \begin{array}{l} V_{\text{IN}} = V_{\text{IL}} \text{ or } V_{\text{IH}} \\ V_{\text{NO}} \text{ or } V_{\text{NC}} = 0.3 \text{ V} \\ V_{\text{COM}} = 3.3 \text{ V} \end{array} $	3.6	-5.0	5.0	-10	10	nA
I _{COM(ON)}	COM ON Leakage Current (Note 3)	$\begin{split} V_{IN} &= V_{IL} \text{ or } V_{IH} \\ V_{NO} & 0.3 \text{ V or } 3.3 \text{ V with} \\ V_{NC} & floating \text{ or } \\ V_{NC} & 0.3 \text{ V or } 3.3 \text{ V with} \\ V_{NO} & floating \\ V_{COM} &= 0.3 \text{ V or } 3.3 \text{ V} \end{split}$	3.6	-10	10	-100	100	nA

 Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
ΔR_{ON =} R_{ON(MAX)} - R_{ON(MIN)} between NC1 and NC2 or between NO1 and NO2.
Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

					Gua	rantee	d Maxi	mum L	.imit	
			V _{cc}	VIS	- 40	0°C to 2	25°C	<8	5°C	
Symbol	Parameter	Test Conditions	(V)	(V)	Min	Тур*	Max	Min	Max	Unit
t _{ON}	Turn–On Time	$R_L = 50 \Omega$, $C_L = 35 pF$ (Figures 3 and 4)	2.3 - 3.6	1.5			25		27	ns
tOFF	Turn-Off Time	$R_L = 50 \Omega$, $C_L = 35 pF$ (Figures 3 and 4)	2.3 – 3.6	1.5			15		20	ns
t _{BBM}	Minimum Break-Before-Make Time		3.0	1.5	2.0	8.0				ns


		Typical @ 25, V _{CC} = 3.6 V	
C _{IN}	Control Pin Input Capacitance	2.5	pF
C _{SN}	SN Port Capacitance	75	pF
CD	D Port Capacitance When Switch is Enabled	240	pF


*Typical Characteristics are at 25°C.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

			V _{CC}	25°C	
Symbol	Parameter	Condition	(V)	Typical	Unit
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response	V_{IN} centered between V_{CC} and GND (Figure 5)	1.65 – 3.6	17	MHz
V _{ONL}	Maximum Feed-through On Loss	V_{IN} = 0 dBm @ 100 kHz to 50 MHz V_{IN} centered between V _{CC} and GND (Figure 5)	1.65 – 3.6	-0.10	dB
V _{ISO}	Off-Channel Isolation	f = 100 kHz; V_{IS} = 1 V RMS; C_L = 5 nF V_{IN} centered between V_{CC} and GND(Figure 5) (Note 6)	1.65 – 3.6	-62	dB
Q	Charge Injection Select Input to Common I/O	$V_{IN} = V_{CC \text{ to}} \text{ GND}, \text{ R}_{IS} = 0 \ \Omega, \text{ C}_{L} = 1 \text{ nF}$ Q = C _L x ΔV_{OUT} (Figure 6)	1.65 – 3.6	50	рС
THD	Total Harmonic Distortion THD + Noise	F_{IS} = 20 Hz to 20 kHz, R_L = R_{gen} = 600 Ω,C_L = 50 pF V_{IS} = 2 V RMS	3.0	0.015	%
VCT	Channel-to-Channel Crosstalk	f = 100 kHz; V_{IS} = 1 V RMS, C_L = 5 pF, R_L = 50 Ω V _{IN} centered between V _{CC} and GND (Figure 5)	1.65 – 3.6	-62	dB

6. Off-Channel Isolation = 20log10 (Vcom/Vno), Vcom = output, Vno = input to off switch.

50%

t_{OFF}

90%

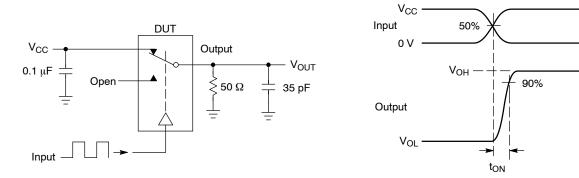
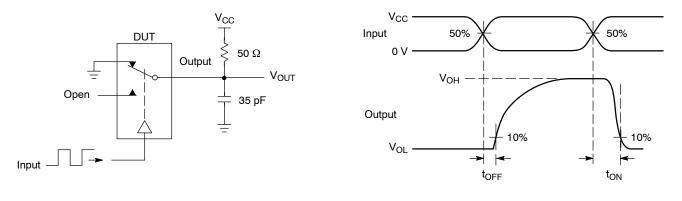
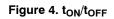
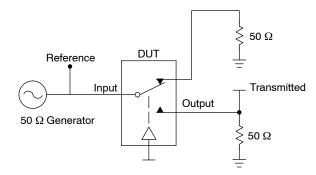
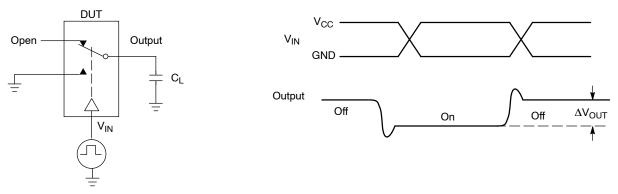





Figure 3. t_{ON}/t_{OFF}



Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$\begin{split} V_{ISO} &= \text{Off Channel Isolation} = 20 \ \text{Log} \left(\frac{V_{OUT}}{V_{IN}} \right) \ \text{for } V_{IN} \text{ at } 100 \ \text{kHz} \\ V_{ONL} &= \text{On Channel Loss} = 20 \ \text{Log} \left(\frac{V_{OUT}}{V_{IN}} \right) \ \text{for } V_{IN} \text{ at } 100 \ \text{kHz} \text{ to } 50 \ \text{MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

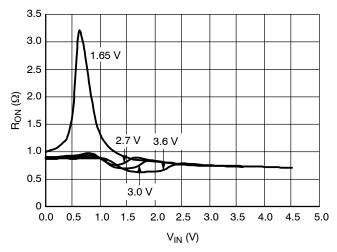


Figure 7. On-Resistance vs. Input Voltage

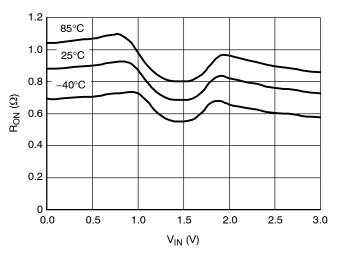
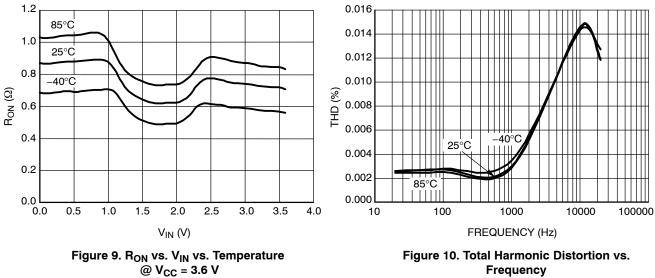
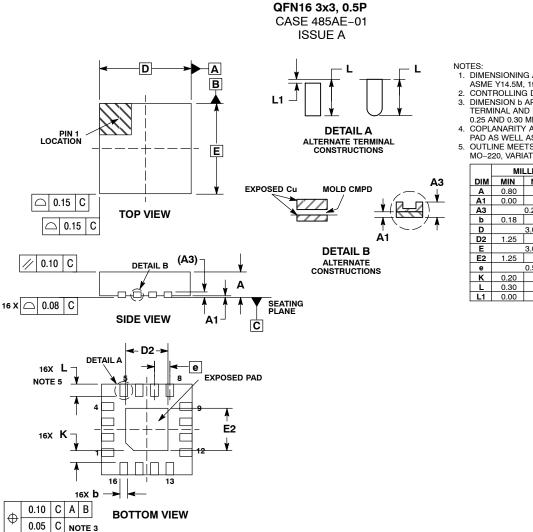



Figure 8. R_{ON} vs. V_{IN} vs. Temperature @ V_{CC} = 3.0 V


http://onsemi.com 9

ORDERING INFORMATION

		Device Nomenclature				
Device Order Number	Circuit Indicator	Technology	Device Tape & Ree chnology Function Suffix		Package Type	Tape & Reel Size [†]
NLAS4783MN1R2G	NL	AS	4783	R2	QFN (Pb-Free)	3000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- ASME T14.30M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- OUTLINE MEETS JEDEC DIMENSIONS PER MO-220, VARIATION VEED-6.

MILLIMETERS MIN NOM MAX 0.90 1.00 0.00 0.03 0.05 0.20 REF 0.25 0.30 3.00 BS0 1.40 1.55 3.00 BSC 1.40 1.55 0.50 BS0 0.40 0.50 -- 0.15

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Order Literature: http://www.onsemi.com/orderlit

Sales Representative

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

For additional information, please contact your local

ON Semiconductor Website: www.onsemi.com

NLAS4783/D