: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NLAS5223C, NLAS5223CL

Ultra-Low 0.35Ω
 Dual SPDT Analog Switch

The NLAS5223C is an advanced CMOS analog switch fabricated in Sub-micron silicon gate CMOS technology. The device is a dual Independent Single Pole Double Throw (SPDT) switch featuring Ultra-Low R_{ON} of 0.35Ω, at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$.

The part also features guaranteed Break Before Make (BBM) switching, assuring the switches never short the driver.

Features

- Ultra-Low $\mathrm{R}_{\mathrm{ON}}, 0.35 \Omega$ (typ) at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
- NLAS5223C Interfaces with 2.8 V Chipset
- NLAS5223CL Interfaces with 1.8 V Chipset
- Single Supply Operation from 1.65-4.5 V
- Full 0-V V_{CC} Signal Handling Capability
- High Off-Channel Isolation
- Low Standby Current, < 50 nA
- Low Distortion
- R_{ON} Flatness of 0.15Ω
- High Continuous Current Capability
- $\pm 320 \mathrm{~mA}$ Through Each Switch
- Large Current Clamping Diodes at Analog Inputs - $\pm 100 \mathrm{~mA}$ Continuous Current Capability
- Package:
- $1.4 \times 1.8 \times 0.55 \mathrm{~mm}$ UQFN10 Pb-Free
- These are $\mathrm{Pb}-$ Free Devices

Applications

- Cell Phone Audio Block
- Speaker and Earphone Switching
- Ring-Tone Chip/Amplifier Switching
- Modems

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

MARKING
DIAGRAM

XX = Specific Device Code
$\overline{\mathrm{M}} \quad=$ Date Code/Assembly Location

- $\quad=$ Pb-Free Device
(Note: Microdot may be in either location)

FUNCTION TABLE

IN $\mathbf{1 , 2}$	NO $\mathbf{1 , 2}$	NC $\mathbf{1 , 2}$
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

Figure 1. Logic Equivalent Circuit

PIN DESCRIPTION

QFN PIN \#	Symbol	Name and Function
$2,5,7,10$	NC1 to NC2, NO1 to NO2	Independent Channels
4,8	IN1 and IN2	Controls
3,9	COM1 and COM2	Common Channels
6	GND	Ground (V)
1	$\mathrm{~V}_{\mathrm{CC}}$	Positive Supply Voltage

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage ($\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, or $\mathrm{V}_{\mathrm{COM}}$)	$-0.5 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}+0.5$	V
V_{IN}	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{\text {IN }} \leq+5.5$	V
$l_{\text {anl1 }}$	Continuous DC Current from COM to NC/NO	± 320	mA
lanl-pk1	Peak Current from COM to NC/NO, 10\% Duty Cycle, $100 \mathrm{~ms}=\mathrm{t}_{\text {ON }}$ (Note 1)	± 600	mA
$l_{\text {anl-pk2 }}$	Instantaneous Peak Current from COM to NC/NO, 10\% Duty Cycle, ton < 1 us	± 850	mA
IClmp	Continuous DC Current into COM/NO/NC with Respect to V ${ }_{\text {CC }}$ or GND	± 100	mA
ESD	ESD Withstand Voltage Human Body Model (HBM)	>3000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Defined as 10% ON, 90% OFF Duty Cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	1.65	4.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage (OVT) Overvoltage Tolerance	GND	4.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage (NC, NO, COM)	GND	V_{CC}	V
T_{A}	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT			n
	$\mathrm{V}_{\mathrm{CC}}=1.6 \mathrm{~V}-2.7 \mathrm{~V}$			
	$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}-4.5 \mathrm{~V}$		20	

[^0] the Recommended Operating Ranges limits may affect device reliability.

NLAS5223C DC CHARACTERISTICS - DIGITAL SECTION (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{Cc}	Guaranteed Limit		Unit
				$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.0 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Select Inputs		$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.8 \end{aligned}$	V
1 IN	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	4.3	± 0.1	± 1.0	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	0	± 0.5	± 2.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (Note 2)	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	1.65 to 4.5	± 1.0	± 2.0	$\mu \mathrm{A}$

2. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

NLAS5223C DC ELECTRICAL CHARACTERISTICS - ANALOG SECTION

Symbol	Parameter	Condition	V_{cc}	Guaranteed Maximum Limit				Unit
				$25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	
RON	NC/NO On-Resistance (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{gathered} 0.4 \\ 0.35 \end{gathered}$		$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$	NC/NO On-Resistance Flatness (Notes 3 and 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & \hline 0.16 \\ & 0.11 \end{aligned}$		$\begin{aligned} & 0.20 \\ & 0.14 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match Between Channels (Notes 3 and 5)	$\begin{aligned} & \hline \mathrm{V}_{\text {IS }}=1.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=2.2 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	Ω
$\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	NC or NO Off Leakage Current (Note 3)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=4.0 \mathrm{~V} \end{aligned}$	4.3	-5.0	5.0	-50	50	nA
$\mathrm{I}_{\text {COM (ON) }}$	COM ON Leakage Current (Note 3)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NO} floating $\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}$ or 4.0 V	4.3	-10	10	-100	100	nA

3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
4. Flatness is defined as the difference between the maximum and minimum value of On-resistance as measured over the specified analog signal ranges.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\text { MIN })}$ between NC1 and NC2 or between NO1 and NO2.

NLAS5223CL DC CHARACTERISTICS - DIGITAL SECTION (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit		Unit
				$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.6 \end{aligned}$	V
V_{IL}	Maximum Low-Level Input Voltage, Select Inputs		$\begin{aligned} & \hline 3.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	V
IN	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ or GND	4.3	± 0.1	± 1.0	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ or GND	0	± 0.5	± 2.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	1.65 to 4.5	± 1.0	± 2.0	$\mu \mathrm{A}$
I ccv	Maximum Quiescent Supply Current, Low Voltage Driving (Note 6)	$\begin{aligned} & V_{\text {IS }}=V_{C C} \text { or GND } \\ & V_{\text {IN }}=1.65 \mathrm{~V} \end{aligned}$	4.3	± 145	± 150	$\mu \mathrm{A}$
		$\begin{aligned} & V_{I S}=V_{C C} \text { or GND } \\ & V_{I N}=1.80 \mathrm{~V} \end{aligned}$		± 125	± 130	
		$\begin{aligned} & \mathrm{V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{IN}}=2.60 \mathrm{~V} \end{aligned}$		± 50	± 55	

6. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

NLAS5223CL DC ELECTRICAL CHARACTERISTICS - ANALOG SECTION

Symbol	Parameter	Condition	$\mathrm{V}_{\text {cc }}$	Guaranteed Maximum Limit				Unit
				$25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	
RON	NC/NO On-Resistance (Note 7)	$\begin{aligned} & V_{I N}=V_{I L} \text { or } V_{I N}=V_{I H} \\ & V_{I S}=G N D \text { to } V_{C C} \\ & I_{C O M}=100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.3 \end{aligned}$		$\begin{gathered} \hline 0.4 \\ 0.35 \end{gathered}$		$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT }}$	NC/NO On-Resistance Flatness (Notes 7 and 8)	$\begin{aligned} & I_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & \hline 0.16 \\ & 0.11 \end{aligned}$		$\begin{aligned} & 0.20 \\ & 0.14 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match Between Channels (Notes 7 and 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=1.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=2.2 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	Ω
$\mathrm{I}_{\mathrm{NC}(\text { OFF })}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	NC or NO Off Leakage Current (Note 7)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=4.0 \mathrm{~V} \end{aligned}$	4.3	-10	10	-100	100	nA
$\mathrm{I}_{\text {COM(ON })}$	COM ON Leakage Current (Note 7)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}} 0.3 \mathrm{~V}$ or 4.0 V with V_{NO} floating $\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}$ or 4.0 V	4.3	-10	10	-100	100	nA

7. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
8. Flatness is defined as the difference between the maximum and minimum value of On-resistance as measured over the specified analog signal ranges.
9. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\text { MAX })}-\mathrm{R}_{\mathrm{ON}(\text { MIN })}$ between NC1 and NC2 or between NO1 and NO2.

NLAS5223C, NLAS5223CL

AC ELECTRICAL CHARACTERISTICS ($\operatorname{lnput} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & V_{\text {IS }} \\ & (\mathrm{V}) \end{aligned}$	Guaranteed Maximum Limit					Unit
					$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			50		60	ns
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 3 and 4)	2.3-4.5	1.5			30		40	ns
$t_{\text {BBM }}$	Minimum Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=3.0 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (Figure 2) } \end{aligned}$	3.0	1.5	2	15				ns

		Typical @ 25, $\mathbf{v}_{\mathbf{C C}}=\mathbf{3 . 6} \mathbf{~ V}$	
C_{IN}	Control Pin Input Capacitance	3.5	pF
$\mathrm{C}_{\mathrm{NO} / \mathrm{NC}}$	NO, NC Port Capacitance	60	pF
$\mathrm{C}_{\mathrm{COM}}$	COM Port Capacitance When Switch is Enabled	200	pF

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	$\begin{aligned} & V_{c c} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$	Unit
				Typical	
BW	Maximum On-Channel -3 dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	24	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feed-through On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ @ 100 kHz to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-0.06	dB
VISO	Off-Channel Isolation	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS} ; \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-68	dB
Q	Charge Injection Select Input to Common I/O	$\begin{aligned} & \mathrm{V}_{\text {IN }}=V_{\text {CC to }} \text { GND, } R_{\text {IS }}=0 \Omega, C_{\mathrm{L}}=1.0 \mathrm{nF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \mathrm{DV}_{\text {OUT }} \text { (Figure 6) } \end{aligned}$	1.65-4.5	38	pC
THD	Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\text {gen }}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=2.0 \mathrm{~V} \text { RMS } \end{aligned}$	3.0	0.08	\%
VCT	Channel-to-Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1.0 \mathrm{~V} \text { RMS, } \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 5)	1.65-4.5	-70	dB

10. Off-Channel Isolation $=20 \log 10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

NLAS5223C, NLAS5223CL

Figure 2. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAS5223C, NLAS5223CL

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 6. Charge Injection: (Q)

NLAS5223C, NLAS5223CL

Figure 7. Cross Talk vs. Frequency $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$

Figure 9. Total Harmonic Distortion

$$
\left(\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}\right)
$$

Figure 11. On-Resistance vs. Input Voltage $@ 25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ and 4.3 V

Figure 8. Bandwidth
($\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$)

Figure 10. Off Isolation
$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$

Figure 12. On-Resistance vs. Input Voltage $@ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

NLAS5223C, NLAS5223CL

Figure 13. On-Resistance vs. Input Voltage
$@ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

ORDERING INFORMATION

Device	Marking	Package	Shipping †
NLAS5223CMUTAG	AK	UQFN10 (Pb-Free)	$3000 /$ Tape \& Reel
NLAS5223CLMUTAG	AU	UQFN10 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NLAS5223C, NLAS5223CL

PACKAGE DIMENSIONS

UQFN10, 1.4x1.8, 0.4P
CASE 488AT
ISSUE A

SIDE VIEW

BOTTOM VIEW

DETAIL A Bottom View (Optional)
 Side View (Optional)

NOTES:
. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.127 REF	
b	0.15	
D	1.40 BSC	
E	1.80 BSC	
E	$0.40 ~ B S C ~$	
L	0.30	0.50
L1	0.00	0.15
L3	0.40	0.60

MOUNTING FOOTPRINT

ON Semiconductor and the 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond

