imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Ultra-Low 0.35 Ω Dual SPDT Analog Switch

The NLAS5223C is an advanced CMOS analog switch fabricated in Sub-micron silicon gate CMOS technology. The device is a dual Independent Single Pole Double Throw (SPDT) switch featuring Ultra-Low R_{ON} of 0.35 Ω , at V_{CC} = 4.3 V.

The part also features guaranteed Break Before Make (BBM) switching, assuring the switches never short the driver.

Features

- Ultra–Low R_{ON}, 0.35 Ω (typ) at V_{CC} = 4.3 V
- NLAS5223C Interfaces with 2.8 V Chipset
- NLAS5223CL Interfaces with 1.8 V Chipset
- Single Supply Operation from 1.65–4.5 V
- Full 0–V_{CC} Signal Handling Capability
- High Off-Channel Isolation
- Low Standby Current, < 50 nA
- Low Distortion
- R_{ON} Flatness of 0.15 Ω
- High Continuous Current Capability
 ±320 mA Through Each Switch
- Large Current Clamping Diodes at Analog Inputs
 - ◆ ±100 mA Continuous Current Capability
- Package:
 - 1.4 x 1.8 x 0.55 mm UQFN10 Pb–Free
- These are Pb–Free Devices

Applications

- Cell Phone Audio Block
- Speaker and Earphone Switching
- Ring-Tone Chip/Amplifier Switching
- Modems

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

(Note: Microdot may be in either location)

FUNCTION TABLE

IN 1, 2	NO 1, 2	NC 1, 2
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

Figure 1. Logic Equivalent Circuit

PIN DESCRIPTION

QFN PIN #	Symbol	Name and Function
2, 5, 7, 10	NC1 to NC2, NO1 to NO2	Independent Channels
4, 8	IN1 and IN2	Controls
3, 9	COM1 and COM2	Common Channels
6	GND	Ground (V)
1	V _{CC}	Positive Supply Voltage

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
V _{IS}	Analog Input Voltage (V _{NO} , V _{NC} , or V _{COM})	$-0.5 \leq V_{IS} \leq V_{CC} + 0.5$	V
V _{IN}	Digital Select Input Voltage	$-0.5 \le V_{IN} \le +5.5$	V
I _{anl1}	Continuous DC Current from COM to NC/NO	±320	mA
I _{anl-pk1}	Peak Current from COM to NC/NO, 10% Duty Cycle, 100 ms = t_{ON} (Note 1)	±600	mA
I _{anl-pk2}	Instantaneous Peak Current from COM to NC/NO, 10% Duty Cycle, t_{ON} < 1 μs	±850	mA
I _{cImp}	Continuous DC Current into COM/NO/NC with Respect to $V_{\mbox{CC}}$ or GND	±100	mA
ESD	ESD Withstand Voltage Human Body Model (HBM)	>3000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Defined as 10% ON, 90% OFF Duty Cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Мах	Unit
V _{CC}	DC Supply Voltage	1.65	4.5	V
V _{IN}	Digital Select Input Voltage (OVT) Overvoltage Tolerance	GND	4.5	V
V _{IS}	Analog Input Voltage (NC, NO, COM)	GND	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Rise or Fall Time, SELECT $V_{CC} = 1.6 V - 2.7 V$ $V_{CC} = 3.0 V - 4.5 V$		20 10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

				Guai	anteed Limit	
Symbol	Parameter	Condition	V _{CC}	25°C	–40°C to +85°C	Unit
V _{IH}	Minimum High-Level Input Voltage, Select Inputs		3.0 4.3	1.4 2.0	1.4 2.0	V
V _{IL}	Maximum Low-Level Input Voltage, Select Inputs		3.0 4.3	0.7 0.8	0.7 0.8	V
I _{IN}	Maximum Input Leakage Current, Select Inputs	$V_{IN} = V_{CC}$ or GND	4.3	±0.1	±1.0	μA
I _{OFF}	Power Off Leakage Current	V _{IN} = V _{CC} or GND	0	±0.5	±2.0	μA
I _{CC}	Maximum Quiescent Supply Current (Note 2)	Select and $V_{IS} = V_{CC}$ or GND	1.65 to 4.5	±1.0	±2.0	μA

NLAS5223C DC CHARACTERISTICS – DIGITAL SECTION (Voltages Referenced to GND)

2. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

NLAS5223C DC ELECTRICAL CHARACTERISTICS - ANALOG SECTION

				Gua	ranteed	Maximur	n Limit	
				25	j°C	–40°C t	o +85°C	
Symbol	Parameter	Condition	V _{CC}	Min	Max	Min	Max	Unit
R _{ON}	NC/NO On–Resistance (Note 3)	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IL} \mbox{ or } V_{IN} = V_{IH} \\ V_{IS} = GND \mbox{ to } V_{CC} \\ I_{COM} = 100 \mbox{ mA} \end{array}$	3.0 4.3		0.4 0.35		0.5 0.4	Ω
R _{FLAT}	NC/NO On–Resistance Flatness (Notes 3 and 4)	$I_{COM} = 100 \text{ mA}$ $V_{IS} = 0 \text{ to } V_{CC}$	3.0 4.3		0.16 0.11		0.20 0.14	Ω
∆R _{ON}	On-Resistance Match Between Channels (Notes 3 and 5)		3.0 4.3		0.05 0.05		0.05 0.05	Ω
I _{NC(OFF)} I _{NO(OFF)}	NC or NO Off Leakage Current (Note 3)	$ \begin{array}{l} V_{IN} = V_{IL} \text{ or } V_{IH} \\ V_{NO} \text{ or } V_{NC} = 0.3 \text{ V} \\ V_{COM} = \ 4.0 \text{ V} \end{array} $	4.3	-5.0	5.0	-50	50	nA
I _{COM(ON)}	COM ON Leakage Current (Note 3)	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IL} \mbox{ or } V_{IH} \\ V_{NO} \mbox{ 0.3 V or } 4.0 \mbox{ V with} \\ V_{NC} \mbox{ floating or } \\ V_{NO} \mbox{ 0.3 V or } 4.0 \mbox{ V with} \\ V_{NO} \mbox{ floating } \\ V_{COM} = 0.3 \mbox{ V or } 4.0 \mbox{ V} \end{array}$	4.3	-10	10	-100	100	nA

3. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

4. Flatness is defined as the difference between the maximum and minimum value of On-resistance as measured over the specified analog signal ranges.

5. $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$ between NC1 and NC2 or between NO1 and NO2.

NLAS5223CL DC CHARACTERISTICS – DIGITAL SECTION (Voltages Referenced to GND)

				Guaranteed Limit		
Symbol	Parameter	Condition	V _{CC}	25°C	–40°C to +85°C	Unit
V _{IH}	Minimum High-Level Input Voltage, Select Inputs		3.0 4.3	1.3 1.6	1.3 1.6	V
V _{IL}	Maximum Low–Level Input Voltage, Select Inputs		3.0 4.3	0.5 0.6	0.5 0.6	V
I _{IN}	Maximum Input Leakage Current, Select Inputs	V _{IN} = 4.5 V or GND	4.3	±0.1	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 4.5 V or GND	0	±0.5	±2.0	μA
I _{CC}	Maximum Quiescent Supply Current	Select and $V_{IS} = V_{CC}$ or GND	1.65 to 4.5	±1.0	±2.0	μA
ICCV	Maximum Quiescent Supply Current, Low Voltage Driving (Note 6)	$V_{IS} = V_{CC} \text{ or } GND$ $V_{IN} = 1.65 \text{ V}$	4.3	±145	±150	μΑ
		$V_{IS} = V_{CC} \text{ or } GND$ $V_{IN} = 1.80 \text{ V}$		±125	±130	
		$V_{IS} = V_{CC}$ or GND $V_{IN} = 2.60$ V		±50	±55	

6. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

NLAS5223CL DC ELECTRICAL CHARACTERISTICS – ANALOG SECTION

				Gua	ranteed	Maximur	n Limit	
				25	o°C	–40°C t	o +85°C	
Symbol	Parameter	Condition	v _{cc}	Min	Max	Min	Max	Unit
R _{ON}	NC/NO On–Resistance (Note 7)		3.0 4.3		0.4 0.35		0.5 0.4	Ω
R _{FLAT}	NC/NO On–Resistance Flatness (Notes 7 and 8)	$I_{COM} = 100 \text{ mA}$ $V_{IS} = 0 \text{ to } V_{CC}$	3.0 4.3		0.16 0.11		0.20 0.14	Ω
ΔR _{ON}	On-Resistance Match Between Channels (Notes 7 and 9)	$V_{IS} = 1.5 V; \\ I_{COM} = 100 \text{ mA} \\ V_{IS} = 2.2 V; \\ I_{COM} = 100 \text{ mA} \end{cases}$	3.0 4.3		0.05 0.05		0.05 0.05	Ω
I _{NC(OFF)} I _{NO(OFF)}	NC or NO Off Leakage Current (Note 7)	$ \begin{array}{l} V_{IN} = V_{IL} \text{ or } V_{IH} \\ V_{NO} \text{ or } V_{NC} = 0.3 \text{ V} \\ V_{COM} = \ 4.0 \text{ V} \end{array} $	4.3	-10	10	-100	100	nA
I _{COM(ON)}	COM ON Leakage Current (Note 7)	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IL} \mbox{ or } V_{IH} \\ V_{NO} \mbox{ 0.3 V or 4.0 V with} \\ V_{NC} \mbox{ floating or} \\ V_{NC} \mbox{ 0.3 V or 4.0 V with} \\ V_{NO} \mbox{ floating} \\ V_{COM} = \mbox{ 0.3 V or 4.0 V} \end{array}$	4.3	-10	10	-100	100	nA

7. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

8. Flatness is defined as the difference between the maximum and minimum value of On-resistance as measured over the specified analog signal ranges.

9. $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$ between NC1 and NC2 or between NO1 and NO2.

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

					Guaranteed Maximum Limit					
			V _{cc}	VIS		25°C		–40°C to	o +85°C	
Symbol	Parameter	Test Conditions	(V)	(V)	Min	Тур*	Max	Min	Max	Unit
t _{ON}	Turn–On Time	$R_L = 50 \Omega$, $C_L = 35 pF$ (Figures 3 and 4)	2.3 – 4.5	1.5			50		60	ns
toff	Turn–Off Time	$R_L = 50 \ \Omega$, $C_L = 35 \ pF$ (Figures 3 and 4)	2.3 – 4.5	1.5			30		40	ns
t _{BBM}	Minimum Break–Before–Make Time		3.0	1.5	2	15				ns

		Typical @ 25, V _{CC} = 3.6 V	
C _{IN}	Control Pin Input Capacitance	3.5	pF
C _{NO/NC}	NO, NC Port Capacitance	60	pF
C _{COM}	COM Port Capacitance When Switch is Enabled	200	pF

*Typical Characteristics are at 25° C.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

			V _{CC}	25°C	
Symbol	Parameter	Condition	(V)	Typical	Unit
BW	Maximum On–Channel –3 dB Bandwidth or Minimum Frequency Response	V _{IN} centered between V _{CC} and GND (Figure 5)	1.65 – 4.5	24	MHz
V _{ONL}	Maximum Feed-through On Loss	$V_{IN} = 0 \text{ dBm } @ 100 \text{ kHz}$ to 50 MHz V_{IN} centered between V_{CC} and GND (Figure 5)	1.65 – 4.5	-0.06	dB
V _{ISO}	Off-Channel Isolation	f = 100 kHz; V_{IS} = 1 V RMS; C_L = 5.0 pF V_{IN} centered between V_{CC} and GND (Figure 5)	1.65 – 4.5	-68	dB
Q	Charge Injection Select Input to Common I/O	$V_{IN} = V_{CC to} \text{ GND}, \text{R}_{IS} = 0 \Omega, \text{C}_{L} = 1.0 \text{nF}$ Q = C _L x DV _{OUT} (Figure 6)	1.65 – 4.5	38	рС
THD	Total Harmonic Distortion THD + Noise	F_{IS} = 20 Hz to 20 kHz, R_L = R_{gen} = 600 $\Omega,~C_L$ = 50 pF V_{IS} = 2.0 V RMS	3.0	0.08	%
VCT	Channel-to-Channel Crosstalk	f = 100 kHz; V_{IS} = 1.0 V RMS, C_L = 5.0 pF, R_L = 50 Ω V_{IN} centered between V_{CC} and GND (Figure 5)	1.65 – 4.5	-70	dB

10. Off–Channel Isolation = 20log10 (V_{COM}/V_{NO}), V_{COM} = output, V_{NO} = input to off switch.

Figure 3. t_{ON}/t_{OFF}

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$\begin{split} V_{ISO} &= Off \ Channel \ Isolation = 20 \ Log\Bigl(\frac{V_{OUT}}{V_{IN}}\Bigr) for \ V_{IN} \ at \ 100 \ kHz \\ V_{ONL} &= On \ Channel \ Loss = 20 \ Log\Bigl(\frac{V_{OUT}}{V_{IN}}\Bigr) for \ V_{IN} \ at \ 100 \ kHz \ to \ 50 \ MHz \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 6. Charge Injection: (Q)

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NLAS5223CMUTAG	AK	UQFN10 (Pb-Free)	3000 / Tape & Reel
NLAS5223CLMUTAG	AU	UQFN10 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

ON Semiconductor and the intervent and the intervent of the product of the property of the property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under tights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product area a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC for any such unintended or unauthorized application. Buyer shall indemnity and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative