

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Audio DPDT Switch with Noise Suppression

Description

The NLAS6234 is a DPDT switch featuring Popless noise suppression circuitry designed to prevent pass through of undesirable transient signals known as pops. Intended for audio systems within portable applications, it provides protection against audible pops that are generated when switching between two different audio sources, such as an amplifier and a CODEC.

The NLAS6234 incorporates two double throw switches controlled by a single select line which allows the system controller to simultaneously switch between two sets of signal lines. The Popless noise suppression circuitry controls the ON and OFF times that define the time interval when switching between the normally open (NO) and normally closed (NC) terminals. This allows any pops to be dissipated within the system before the switch settles into a closed position.

The NLAS6234 operates off of a single supply voltage, V_{CC} , and is available in an ultra-thin UQFN10 package.

Features

- Popless Noise Suppression Circuitry
- OVT up to +4.5 V on Control Pin
- $R_{ON} < 0.5 \Omega$ Across BCC Range, Typical
- THD < 0.02 %, Typical
- Off Isolation = -70 dB, Typical
- Crosstalk Attenuation < -70 dB, Typical
- Ultra Small, Thin Package: 1.4 mm x 1.8 mm UQFN10
- This is a Pb-Free Device

Typical Applications

• Cell Phones, PDAs, MP3 and Other Portable Media Players

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

AR M=

AR = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

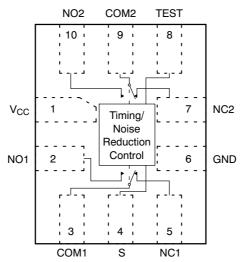


Figure 1. Pin Connections and Logic Diagram (Top View)
NOTE: Pin 8 is for ATE use only, not intended for end customer use.

PIN ASSIGNMENT

PIN	FUNCTION
V _{CC}	Supply Voltage
GND	Ground
S	Control Input Select Line
TEST	ATE Test Pin
NC1, NO1, NC2, NO2	Independent Channels
COM1, COM2	Common Channels

TRUTH TABLE

S	NC1, NC2	NO1, NO2
0	ON	OFF
1	OFF	ON

MAXIMUM RATINGS

Symbol	Pins	Rating	Value	Unit
V _{CC}	V _{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
V _{IS}	NOx, NCx, COMx	Analog Signal Voltage	-0.5 to V _{CC} + 0.5	V
V _{IN}	S	Control Input Voltage	-0.5 to +5.5	V
I _{IS_CON}	NOx, NCx, COMx	Analog Signal Continuous Current-Closed Switch	±300	mA
I _{IS_PK}	NOx, NCx, COMx	Analog Signal Continuous Current 10% Duty Cycle	±500	mA
I _{IN}	S Control Input Current		±20	mA
Ts	T _S Storage Temperature		-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Min	Max	Unit
V _{CC}	V _{CC}	Positive DC Supply Voltage	2.7	4.5	V
V _{IS}	NOx, NCx, COMx	Analog Signal Voltage	GND	V _{CC}	V
V _{IN}	S	Control Input Voltage (OVT Protection)	GND	4.5	V
T _A	Operating Temperature Range		-40	+85	°C
t _r , t _f		Input Rise or Fall Time, S V _{CC} = 3.0 V to 3.6 V	0	10	ns/V

DC ELECTRICAL CHARACTERISTICS

CONTROL INPUT (Typical: T = 25°C, V_{CC} = 3.3 V)

					-40	0°C to +85	5°C	
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
V _{IH}	S	Minimum High-Level Input Voltage, Select Input		2.7 4.2	1.4 2.0	-	-	V
V _{IL}	S	Maximum Low-Level Input Voltage, Select Input		2.7 4.2	-	-	0.7 0.8	٧
I _{IN}	S	Control Input Leakage Current	V _{IS} = GND	2.7-4.5	-	±100	±1000	nA

SUPPLY CURRENT AND LEAKAGE (Typical: T = 25° C, $V_{CC} = 3.3$ V, $V_{IN} = V_{CC}$ or GND)

					-40	0°C to +85	5°C	
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
Icc	V _{CC}	Quiescent Supply Current	$V_{IS} = V_{CC}$ or GND; $I_D = 0$ A	2.7 - 4.5	-	<100	1000	nA
I _{NC(OFF)} , I _{NO(OFF)}	NCx, NOx	OFF State Leakage Current	V _{COM} = 4.5 V V _{NO} , V _{NC} = 1.0 V	2.7 - 4.5	-	±10	±1000	nA
I _{OFF}		Power OFF Leakage Current	V _{IS} = GND	0	-	±10	±1000	nA

ON RESISTANCE (Typical: T = 25°C, $V_{CC} = 3.3 \text{ V}$)

					-40)°C to +85	5°C	
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
R _{ON}		On-Resistance	$\begin{aligned} &V_{IN} = V_{IL} \text{ or } V_{IN} = V_{IH} \\ &V_{IS} = 0 \text{ to } V_{CC}; \\ &I_{IS} = 100 \text{ mA} \end{aligned}$	2.7 4.2	-	0.40 0.35	0.60 0.55	Ω
R _{FLAT}		On-Resistance Flatness	$V_{IS} = 0 \text{ to } V_{CC};$ $I_{IS} = 100 \text{ mA}$	2.7 4.2	-	0.14 0.15	0.19 0.20	Ω
ΔR _{ON}		On-Resistance Match Between Channels	$V_{IS} = 0$ to V_{CC} ; $I_{IS} = 100$ mA	2.7 4.2	-	0.15 0.15	0.20 0.20	Ω

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 35 pF, f = 1 MHz)

					-40	0°C to +85	s°C	
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
t _{ON}	-	Turn-ON Time (Figures 2, 3, 12)		2.7-4.5		11		ns
t _{OFF}	-	Turn-OFF Time (Figures 2, 3, 13)		2.7-4.5		9.0		ns
t _{BBM}	-	Minimum Break Before Make Time (Figure 14)	V _{IS} = 3.0, typ @ V _{CC} = 3.6 V	3.4-4.2		60		ms
BW	-	-3 dB Bandwidth	V _{IS} = 0 dB	2.7-4.5		36		MHz

ISOLATION (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF)

					-40)°C to +85	°C	
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
O _{IRR}	NOx	OFF-Isolation	$V_{IS} = 1.0 V_{RMS}$, $f = 100 \text{ kHz}$	2.7-4.5		-70		dB
XTALK	COM 1 to COM 2	Crosstalk	V _{IS} = 1.0 V _{RMS} , f = 100 kHz	2.7-4.5		-98		dB
THD	-	Total Harmonic Distortion	$R_L = 600 \Omega,$ $V_{COMn} = 2.0 V_{p-p}$	3.0		0.02		%

$\textbf{CAPACITANCE} \text{ (Typical: } T = 25^{\circ}\text{C, V}_{CC} = 3.3 \text{ V, R}_{L} = 50 \text{ }\Omega\text{, C}_{L} = 5 \text{ pF, f} = 1 \text{ MHz)}$

					-40	0°C to +85	°C	
Symbol	Pins	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
C _{IN}	S	Select Input Capacitance		0		2.5		pF
C _{OFF}	NOx	OFF-Capacitance	V _{IS} = 3.3 V, S = 0 V	2.7-4.5		72		pF
C _{ON}	COMx to NCx	ON-Capacitance	S = 0 V	2.7-4.5		113		pF

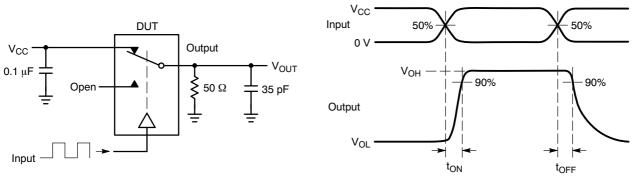


Figure 2. t_{ON} / t_{OFF} , $V_{is} = V_{CC}$

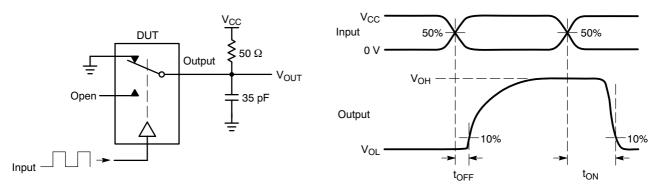
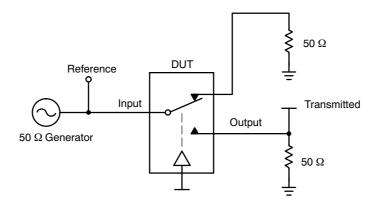



Figure 3. t_{ON} / t_{OFF} , $V_{is} = GND$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$\begin{split} &\text{V}_{\text{ISO}} = \text{Off Channel Isolation} = 20 \text{ Log} \left(\frac{\text{V}_{\text{OUT}}}{\text{V}_{\text{IN}}}\right) \text{for V}_{\text{IN}} \text{ at 100 kHz} \\ &\text{V}_{\text{ONL}} = \text{On Channel Loss} = 20 \text{ Log} \left(\frac{\text{V}_{\text{OUT}}}{\text{V}_{\text{IN}}}\right) \text{for V}_{\text{IN}} \text{ at 100 kHz to 50 MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 4. Off-Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

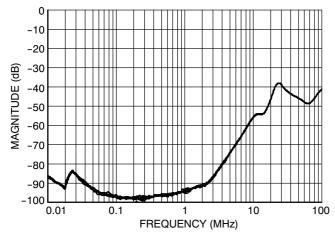


Figure 5. Crosstalk vs. Frequency @ 25°C

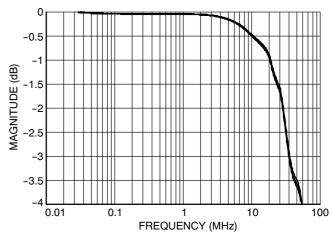


Figure 6. Bandwidth vs. Frequency @ $V_{CC} = 3 V$

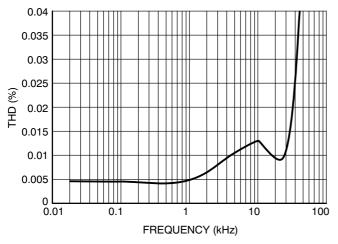


Figure 7. Total Harmonic Distortion @ V_{CC} = 3.0 V

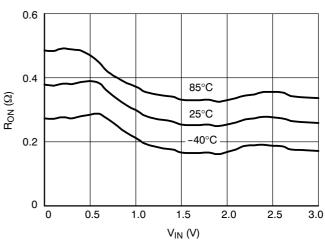


Figure 8. On-Resistance vs. Input Voltage
@ V_{CC} = 3.0 V

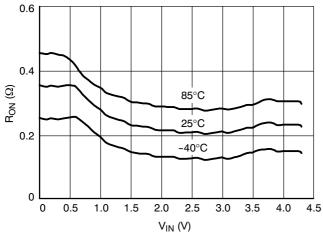


Figure 9. On-Resistance vs. Input Voltage @ V_{CC} = 4.3 V

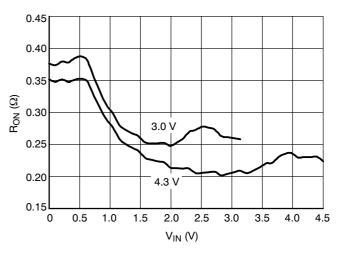


Figure 10. On-Resistance vs. Input Voltage @ 25°C

Figure 11. $I_{\rm CC}$ vs $V_{\rm CC}$

Figure 12. $t_{\rm ON}$ vs $V_{\rm CC}$

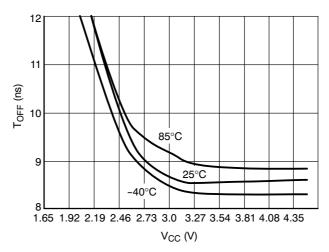


Figure 13. $t_{\rm OFF}$ vs $V_{\rm CC}$

Popless Implementation on the NLAS6234

Audio sources such as amplifiers or CODECs can generate undesirable, transient voltage spikes when powering up and down. Those voltage spikes can be translated into current surges and ultimately lead to audible pop noises in the speaker if not diverted or suppressed. The NLAS6234 includes popless noise suppression circuitry designed to prevent such undesirable pops from propagating through to the speaker. This feature is realized through a deliberate increase in the Break-Before-Make time, t_{BBM}, and is useful in applications

where a switch is used to alternate between two different audio sources.

When the signal from the common pin is removed from one terminal, the switch waits an extended amount of time before connecting to the opposite terminal. The time interval for t_{BBM} is a function of the supply voltage of the switch, V_{CC} . Figure 14 shows the relationship of t_{BBM} for each V_{CC} value within the recommended operating voltage range.

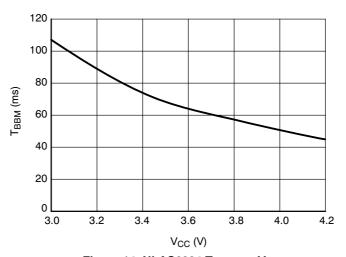
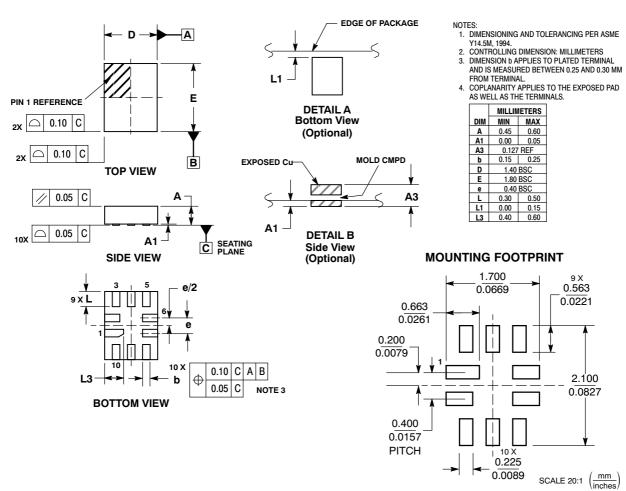


Figure 14. NLAS6234 T_{BBM} vs. V_{CC}


DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NLAS6234MUTBG	UQFN10 (Pb-Free)	3000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PACKAGE DIMENSIONS

UQFN10, 1.4x1.8, 0.4P CASE 488AT-01 **ISSUE A**

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered raderians of semiconductor Components industries, Ite (SciLLC) solic (SciLC). Solic the serves are right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative