: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NLAS9431

Low Voltage Single Supply Dual DPDT Analog Switch

The NLAS9431 is an advanced dual-independent CMOS double pole-double throw (DPDT) analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. This DPDT controls analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).

The device has been designed so the ON resistance (R_{ON}) is much lower and more linear over input voltage than R_{ON} of typical CMOS analog switches.

The channel select input is compatible with standard CMOS outputs.
The channel select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage - input/output voltage mismatch, battery backup, hot insertion, etc.

The NLAS9431 can also be used as a quad 2-to-1 multiplexerdemultiplexer analog switch with two Select pins that each controls two multiplexer-demultiplexers.

- Direct Battery Connection
- Channel Select Input Over-Voltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break-Before-Make Circuitry
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- Chip Complexity: 158 FETs
- 16-Lead WQFN Package, $1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$
- This is a Pb -Free Device

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com


```
BA = Specific Device Code
\(\bar{M} \quad=\) Date Code \& Assembly Location
- \(\quad=\) Pb-Free Device
```

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

FUNCTION TABLE

Select AB or CD	On Channel
L	NC to COM
H	NO to COM

Figure 1. Logic Diagram

Figure 2. IEC Logic Symbol

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IS }}$	Analog Input Voltage ($\mathrm{V}_{\text {NO }}$ or $\left.\mathrm{V}_{\mathrm{COM}}\right)$	$-0.5 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	
$\mathrm{~V}_{\text {IN }}$	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{I}} \leq+7.0$	V
I_{IK}	DC Current, Into or Out of Any Pin	± 50	mA
P_{D}	Power Dissipation in Still Air	800	mW
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity	Level 1	
$\mathrm{~F}_{\mathrm{R}}$	Flammability Rating	Oxygen Index: $30 \%-35 \%$	$\mathrm{UL} \mathrm{94-VO(0.125} \mathrm{in)}$
$\mathrm{I}_{\text {Latch-Up }}$	Latch-Up Performance	± 300	mA
θ_{JA}	Thermal Resistance	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	GND	5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage (NC, NO, COM)	GND	V_{CC}	V
T_{A}	Operating Temperature Range	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	100
n	ns / V			
		20		

DEVICE JUNCTION TEMPERATURE VERSUS

TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		2.0	1.5	1.5	1.5	V
			2.5	1.9	1.9	1.9	
			3.0	2.1	2.1	2.1	
			4.5	3.15	3.15	3.15	
			5.5	3.85	3.85	3.85	
V_{IL}	Maximum Low-Level Input Voltage, Select Inputs		2.0	0.5	0.5	0.5	V
			2.5	0.6	0.6	0.6	
			3.0	0.9	0.9	0.9	
			4.5	1.35	1.35	1.35	
			5.5	1.65	1.65	1.65	
I_{N}	Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	5.5	± 0.2	± 2.0	± 2.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current, Select Inputs	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	0	± 10	± 10	± 10	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	4.0	4.0	8.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {ON }}$	Maximum "ON" Resistance (Figures 17-23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{IIN}^{\mathrm{I}} \leq 10.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 95 \\ & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 105 \\ & 55 \\ & 40 \\ & 35 \end{aligned}$	Ω
$\mathrm{R}_{\text {FLAT (}}$ (${ }^{\text {a }}$)	ON Resistance Flatness (Figures 17-23)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	4.5	4	4	5	Ω
$\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	NO or NC Off Leakage Current (Figure 9)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}_{\mathrm{COM}} 4.5 \mathrm{~V} \end{aligned}$	5.5	1	10	100	nA
$\mathrm{I}_{\text {COM (ON) }}$	COM ON Leakage Current (Figure 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NO} floating $\mathrm{V}_{\text {COM }}=1.0 \mathrm{~V}$ or 4.5 V	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	V_{Cc} (V)	$\begin{aligned} & V_{\text {IS }} \\ & \text { (V) } \end{aligned}$	Guaranteed Maximum Limit							Unit
					$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$		$<125^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	Min	Max	
ton	Turn-On Time (Figures 12 and 13)	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 5 and 6)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \hline 23 \\ 16 \\ 11 \\ 9 \end{gathered}$	$\begin{aligned} & 35 \\ & 24 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 38 \\ & 27 \\ & 19 \\ & 17 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 41 \\ & 30 \\ & 22 \\ & 20 \end{aligned}$	ns
tofF	Turn-Off Time (Figures 12 and 13)	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 5 and 6)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} 12 \\ 10 \\ 6 \\ 5 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline 15 \\ 13 \\ 9 \\ 8 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \\ & 12 \\ & 11 \end{aligned}$	ns
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figure 4)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	1 1 1 1	$\begin{gathered} \hline 12 \\ 11 \\ 6 \\ 5 \end{gathered}$		1 1 1 1		1 1 1 1		ns

		Typical @ 25, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$	
C_{IN}	Maximum Input Capacitance, Select Input	8	
C_{NO} or C_{NC}	Analog I/O (switch off)	10	
$\mathrm{C}_{\mathrm{COM}}$	Common I/O (switch off)	10	
$\mathrm{C}_{(\mathrm{ON})}$	Feedthrough (switch on)	20	

*Typical Characteristics are at $25^{\circ} \mathrm{C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Typical	Unit
				$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response (Figure 11)	$\mathrm{V}_{\mathrm{IS}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and $G N D$ (Figure 7)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 145 \\ & 170 \\ & 175 \end{aligned}$	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feedthrough On Loss	$\mathrm{V}_{\text {IS }}=0 \mathrm{dBm} @ 100 \mathrm{kHz}$ to 50 MHz $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and $G N D$ (Figure 7)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-3 \\ & -3 \\ & -3 \end{aligned}$	dB
VISO	Off-Channel Isolation (Figure 10)	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\text {IS }}=1 \mathrm{~V}$ RMS $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and GND (Figure 7)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -93 \\ & -93 \\ & -93 \end{aligned}$	dB
Q	Charge Injection Select Input to Common I/O (Figure 15)	$\begin{aligned} & V_{I S}=V_{C C} \text { to } G N D, F_{I N}=20 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns} \\ & \mathrm{R}_{\mathrm{IS}}=0 \Omega, C_{L}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}}^{*} \Delta \mathrm{~V}_{\mathrm{OUT}} \\ & \text { (Figure 8) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise (Figure 14)	$\begin{aligned} & \mathrm{F}_{\mathrm{IN}}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\text { Rgen }=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IS}}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \end{aligned}$	5.5	0.1	\%
VCT	Channel-to-Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz}$; VIS $=1 \mathrm{~V}$ RMS $\mathrm{V}_{\text {IS }}$ centered between V_{CC} and $G N D$ (Figure 7)	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & -90 \\ & -90 \end{aligned}$	dB

Figure 4. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 6. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IS }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IS }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω
Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ ${ }_{\text {ONL }}$

Figure 8. Charge Injection: (Q)

Figure 9. Switch Leakage vs. Temperature

Figure 10. Off-Channel Isolation

Figure 12. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs. V_{CC} at $25^{\circ} \mathrm{C}$

Figure 14. Total Harmonic Distortion Plus Noise vs. Frequency

Figure 11. Typical Bandwidth and Phase Shift

Figure 13. $t_{\text {ON }}$ and $t_{\text {OFF }}$ vs. Temp

Figure 15. Charge Injection vs. COM Voltage

Figure 16. Icc vs. Temp, $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$ \& 5 V

Figure 18. $\mathrm{R}_{\mathrm{ON}} \mathrm{Vs}$ Temp, $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$

Figure 20. R ${ }_{\text {ON }}$ vs. Temp, $\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$

Figure 17. R_{ON} vs. $\mathrm{V}_{\mathrm{CC}}, \mathrm{Temp}=25^{\circ} \mathrm{C}$

Figure 19. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 21. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

NLAS9431

Figure 22. R $_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$

Figure 23. R $_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

DEVICE ORDERING INFORMATION

	Device Nomenclature						
Device	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix	Package Type	
NLAS9431MTR2G	NL	AS	9431	MT	R2	WQFN16 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

PACKAGE DIMENSIONS

WQFN16, 1.8x2.6, 0.4P
CASE 488AP-01
ISSUE B

DETAILA

CONSTRUCTIONS

DETAIL B
alternate CONSTRUCTIONS

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM AND IS MEASURE
FROM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS
5. EXPOSED PADS CONNECTED TO DIE FLAG USED AS TEST CONTACTS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.70	0.80
A1	0.00	0.050
A3	0.20	
REF		
b	0.15	
D	0.80	
E	2.60	

MOUNTING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative

[^0]: ON Semiconductor and ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

