: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NLAST4599

Low Voltage Single Supply SPDT Analog Switch

The NLAST4599 is an advanced high speed CMOS single pole double throw analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining low power dissipation. This switch controls analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND).

The device has been designed so the ON resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$ is much lower and more linear over input voltage than R_{ON} of typical CMOS analog switches.
The channel select input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage - input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- Select Pin Compatible with TTL Levels
- Channel Select Input Over-Voltage Tolerant to 5.5 V
- Fast Switching and Propagation Speeds
- Break-Before-Make Circuitry
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Diode Protection Provided on Channel Select Input
- Improved Linearity and Lower ON Resistance over Input Voltage
- Latch-up Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; MM > 200 V
- Chip Complexity: 38 FETs
- NLVAST Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pin Assignment

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

A1 = Specific Device Code
A = Assembly Location
Y = Year
W = Work Week
M = Date Code*
= Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position and underbar may vary depending upon manufacturing location.

FUNCTION TABLE

Select	ON Channel
L	NC
H	NO

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Figure 2. Logic Symbol

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Positive DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
Analog Input Voltage (V_{NO} or $\mathrm{V}_{\mathrm{COM}}$)	$\mathrm{V}_{\text {IS }}$	$-0.5 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}+0.5$	V
Digital Select Input Voltage	$\mathrm{V}_{\text {IN }}$	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$	V
DC Current, Into or Out of Any Pin	1 IK	± 50	mA
$\begin{array}{ll}\text { Power Dissipation in Still Air } & \text { SC-88 } \\ & \text { TSOP6 }\end{array}$	P_{D}	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	mW
Storage Temperature Range	TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1 mm from Case for 10 seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$
Junction Temperature Under Bias	T_{J}	150	${ }^{\circ} \mathrm{C}$
ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\mathrm{V}_{\text {ESD }}$	$\begin{aligned} & 2000 \\ & 200 \\ & N / A \end{aligned}$	V
Latchup Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	l latchup	± 300	mA
Thermal Resistance SC-88 TSOP6	$\theta_{\text {JA }}$	$\begin{aligned} & 333 \\ & 333 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected

1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
2. Tested to EIA/JESD22-A114-A
3. Tested to EIA/JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Characteristics		Symbol	Min	Max	Unit
DC Supply Voltage		V_{CC}	2.0	5.5	V
Digital Select Input Voltage		$\mathrm{V}_{\text {IN }}$	GND	5.5	V
Analog Input Voltage (NC, NO, COM)		$\mathrm{V}_{\text {IS }}$	GND	$\mathrm{V}_{\text {c }}$	V
Operating Temperature Range		T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Time SELECT	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$	ns / V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Parameter	Condition	Symbol	V_{cc}	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Minimum High-Level Input Voltage, Select Input		V_{IH}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	V
Maximum Low-Level Input Voltage, Select Input		$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
Maximum Input Leakage Current, Select Input	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	1 N	5.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Power Off Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	loff	0	± 10	± 10	± 10	$\mu \mathrm{A}$
Maximum Quiescent Supply Current	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	ICC	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Parameter	Condition	Symbol	V_{cc}	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Maximum "ON" Resistance (Figures 17-23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{1 S}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \end{aligned}$	R ON	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 95 \\ & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} 105 \\ 55 \\ 40 \\ 35 \end{gathered}$	Ω
ON Resistance Flatness (Figures 17 - 23)	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IIN}^{\mathrm{IN}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	RFLAT (ON)	4.5	4	4	5	Ω
ON Resistance Match Between Channels	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IN}^{\mathrm{N}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{aligned}$	$\Delta \mathrm{R}_{\mathrm{ON}}$ (ON)	4.5	2	2	3	Ω
NO or NC Off Leakage Current (Figure 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}_{\mathrm{COM}} 4.5 \mathrm{~V} \end{aligned}$	${ }^{\prime} \mathrm{NC}(\mathrm{OFF})$ ${ }^{1} \mathrm{NO}(\mathrm{OFF})$	5.5	1	10	100	nA
COM ON Leakage Current (Figure 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NO} floating $\mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V}$ or 4.5 V	ICOM(ON)	5.5	1	10	100	nA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Parameter	Condition	Symbol	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Typical $25^{\circ} \mathrm{C}$	Unit
Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response (Figure 10)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and $G N D$ (Figure 7)	BW	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 200 \\ & 200 \end{aligned}$	MHz
Maximum Feedthrough On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm} @ 100 \mathrm{kHz}$ to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\mathrm{V}_{\text {ONL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
Off-Channel Isolation (Figure 10)	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\text {IS }}=1 \mathrm{~V} \mathrm{RMS} \\ & \mathrm{~V}_{\text {IN }} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and GND } \\ & \text { (Figure 7) } \end{aligned}$	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-93 \\ & -93 \\ & -93 \end{aligned}$	dB
Charge Injection Select Input to Common I/O (Figure 15)	$\begin{aligned} & V_{I N}=V_{C C \text { to }} G N D, F_{I S}=20 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{nS} \\ & R_{I S}=0 \Omega, C_{L}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}} * \Delta \mathrm{~V}_{\text {OUT, }} \text { (Figure 8) } \end{aligned}$	Q	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
Total Harmonic Distortion THD + Noise (Figure 14)	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{Rgen}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=5.0 \mathrm{~V} \text { PP sine wave } \end{aligned}$	THD	5.5	0.1	\%

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLVAST Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

NLAST4599

Figure 4. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 6. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAST4599

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Output

Figure 8. Charge Injection: (Q)

Figure 9. Switch Leakage vs. Temperature

NLAST4599

Figure 10. Bandwidth and Off-Channel Isolation

Figure 12. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs. V_{CC} at $25^{\circ} \mathrm{C}$

Figure 14. Total Harmonic Distortion Plus Noise vs. Frequency

Figure 11. Phase vs. Frequency

Figure 13. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs. Temp

Figure 15. Charge Injection vs. COM Voltage

Figure 16. Icc vs. Temp, $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$ \& 5 V

Figure 18. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$ Temp, $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$

Figure 20. R_{ON} vs. Temp, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 17. R $_{\text {ON }}$ vs. $V_{\text {CC }}$, Temp $=25^{\circ} \mathrm{C}$

Figure 19. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs} . \mathrm{Temp}^{\mathrm{V}} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 21. R $_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$

Figure 22. R $_{\mathrm{ON}}$ vs. Temp, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 23. R $_{\mathrm{ON}}$ vs. Temp, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

Figure 24. Tape Ends for Finished Goods

Figure 25. SC70-6/SC-88/SOT-363 DFT2 and SOT23-6/TSOP-6/SC59-6 DTT1 Reel Configuration/Orientation

NLAST4599

Figure 26. Reel Dimensions

REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	G	t Max
8 mm	$\mathrm{~T} 1, \mathrm{~T} 2$	178 mm	$8.4 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$	14.4 mm
		$(7 \mathrm{in})$	$(0.33 \mathrm{in}+0.059 \mathrm{in},-0.00)$	$(0.56 \mathrm{in})$

Figure 27. Reel Winding Direction

NLAST4599

PACKAGE DIMENSIONS

TSOP-6
CASE 318G-02
ISSUE V

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
4. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
5. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,

PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

DIM	MILLIMETERS		
	MIN	NOM	MAX
A	0.90	1.00	1.10
A1	0.01	0.06	0.10
\mathbf{b}	0.25	0.38	0.50
c	0.10	0.18	0.26
D	2.90	3.00	3.10
E	2.50	2.75	3.00
E1	1.30	1.50	1.70
e	0.85	0.95	1.05
L	0.20	0.40	
L2	0.25 BSC		
\mathbf{M}	0°	-	

RECOMMENDED
SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLAST4599

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363
 CASE 419B-02

ISSUE Y

SIDE VIEW

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,

PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0. 20 PER END.
4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
5. DATUMS A AND B ARE DETERMINED AT DATUM H.
6. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	---	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		

END VIEW
RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns tne rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

