

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

4-Bit Dual-Supply Bus Buffer Level Translator with 26 Ω Output Series Resistor

The NLSV4T3234 is a 4-bit configurable dual-supply voltage level translator. The input (B–) and output (A–) ports are designed to track two different power supply rails, V_{CCB} and V_{CCA} respectively. Both supply rails are configurable from 0.9 V to 4.5 V, allowing high–to–low and low–to high voltage translation from the input (B–) to the output (A–) port.

The NLSV4T3234 is a low power voltage translator that contains series output resistors, and overvoltage tolerant (OVT) input and output protection. The 26 Ω series resistor on the output drivers minimizes ringing on the logic transition edges. The OVT feature allows the NLSV4T3234 to translate input signals greater than the input power supply V_{CCB} and protects the IC from damage if a signal is connected to an output pin that is greater than V_{CCA} .

Features

- Wide V_{CCA} and V_{CCB} Operating Range: 0.9 V to 4.5 V
- High-Speed Logic Voltage Translation
- 26 Ω Series Resistors on Outputs (A–) Reduce Ground Bounce and Overshoot
- Overvoltage Tolerant (OVT) Inputs and Outputs to 4.5 V
- Non-preferential Power Supply Sequencing
- Outputs At 3-State Until Active V_{CC} Is Reached
- Outputs Switch to 3-State with V_{CCA} at GND
- Ultra-Small Packaging: 1.41 mm x 2.04 mm Flip-Chip11
- RoHS Compliant
- This is a Pb–Free Device*

Typical Applications

• Mobile Phones, PDAs, Other Portable Devices

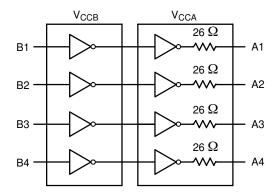
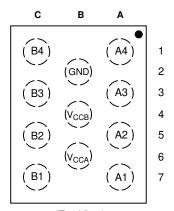


Figure 1. Logic Diagram

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM


11 PIN FLIP-CHIP FC SUFFIX CASE 766AJ

4T3234 = Specific Device Code A = Assembly Location

Y = Year WW = Work Week = Pb-Free Package

PIN ASSIGNMENT

(Top View)

ORDERING INFORMATION

Device	Package	Shipping [†]
NLSV4T3234FCT1G	Flip-Chip11 (Pb-Free)	3000/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PIN NAMES

PIN	Description
V _{CCB}	Input Port DC Power Supply
V _{CCA}	Output Port DC Power Supply
GND	Ground
B _n	Input Port
An	Output Port

TRUTH TABLE

Inputs (B _{n)}	Outputs (A _n)
L	L
Н	Н

PIN DESCRIPTION

Pin	Symbol	Description
A1	A4	Data Output
А3	A3	Data Output
A5	A2	Data Output
A7	A1	Data Output
B2	GND	Ground
В4	V _{CCB}	Input Power Supply
B6	V _{CCA}	Output Power Supply
C1	B4	Data Input
C3	B3	Data Input
C5	B2	Data Input
C7	B1	Data Input

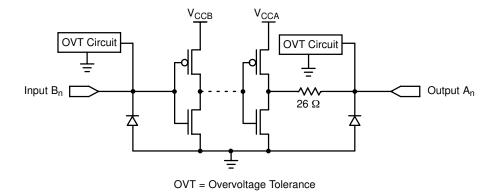


Figure 2. Simplified Input and Output Circuit Schematic

MAXIMUM RATINGS

Symbol	Ratir	ng		Value	Condition	Unit
V _{CCA} , V _{CCB}	DC Supply Voltage			-0.5 to +5.5		V
VI	DC Input Voltage	(Power Down)	B _n	-0.5 to +5.5	$V_{CCA} = V_{CCB} = 0$	V
		(Active Mode)	B _n	-0.5 to +5.5		
V _O	DC Output Voltage	(Power Down)	A _n	-0.5 to +5.5	$V_{CCA} = V_{CCB} = 0$	V
		(Active Mode)	A _n	-0.5 to +5.5		V
I _{IK}	DC Input Diode Current			-20		mA
I _{OK}	DC Output Diode Current			-50	$V_O > V_{CC}$; $V_O < GND$	mA
Io	DC Output Source/Sink C	urrent		±50		mA
I _{CCA} , I _{CCB}	DC Supply Current Per St	upply Pin		±100		mA
I _{GND}	DC Ground Current per G	round Pin		±100		mA
T _{STG}	Storage Temperature			-65 to +150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Parameter						
V _{CCA} , V _{CCB}	Positive DC Supply Voltage		0.9	4.5	V			
V_{IB}	Bus Input Voltage (B _{n)}		GND	4.5	V			
V_{IA}	Bus Output Voltage (An)	(Power Down Mode)	GND	4.5	V			
		(Active Mode)	GND	V _{CCA}	V			
T _A	Operating Temperature Range		-40	+85	°C			
$\Delta t / \Delta V$	Input Transition Rise or Rate (Note 1)	V _{CCB} = 3.6 to 4.5 V	0	10	nS/V			
		$V_{CCB} = 2.3 \text{ to } 3.5 \text{ V}$	0	20	nS/V			
		$V_{CCB} = 0.9 \text{ to } 2.2 \text{ V}$	0	100	nS/V			

^{1.} V_I from 0.8 V to 2.0 V at $V_{CC} = 3.0 \text{ V}$

DC ELECTRICAL CHARACTERISTICS

					-40°C t	o +85°C			
Symbol	Parameter	V _{CCB} (V)	V _{CCA} (V)	Test Conditions	Min	Max	Unit		
		3.6 – 4.5			2.3	-			
		2.7 – 3.6			2.0	-			
V_{IHB}	HB Input HIGH Voltage	2.3 – 2.7	0.9 – 4.5		1.6	-	٧		
		1.4 –2.3	1.4 –2.3		0.65 * V _{CCB}	-			
		0.9 – 1.4			0.9 * V _{CCB}	-			
		3.6 – 4.5			-	0.8			
		2.7 – 3.6			-	0.8			
V_{ILB}	Input LOW Voltage	2.3 – 2.7	0.9 – 4.5		-	0.7	٧		
		1.4 –2.3			-	0.35 * V _{CCB}			
		0.9 – 1.4			-	0.1 * V _{CCB}			
			0.9 – 4.5	$I_{OH} = -100 \mu A; V_I = V_{IH}$	V _{CCA} - 0.2	-			
			0.9	$I_{OH} = -0.5 \text{ mA}; V_I = V_{IH}$	0.75 * V _{CCA}	-			
			1.4	$I_{OH} = -2 \text{ mA}; V_I = V_{IH}$	1.05	-			
			1.65	$I_{OH} = -6 \text{ mA}; V_I = V_{IH}$	1.25	-	V		
			2.3		2.0	-			
V_{OHA}	Output HIGH Voltage	0.9 - 4.5	2.3		1.8	_			
			2.7	$I_{OH} = -12 \text{ mA}; V_I = V_{IH}$	2.2	_			
			2.3		1.7	-			
			3.0	$I_{OH} = -18 \text{ mA}; V_I = V_{IH}$	2.4	-			
			3.0	$I_{OH} = -24 \text{ mA}; V_I = V_{IH}$	2.2	-			
			0.9 – 4.5	$I_{OL} = 100 \mu A; V_I = V_{IL}$	-	0.2			
			1.1	$I_{OL} = 0.5 \text{ mA}; V_I = V_{IH}$	-	0.3 * V _{CCA}			
			1.4	$I_{OL} = 2 \text{ mA}; V_I = V_{IH}$	-	0.35			
			1.65	$I_{OL} = 6 \text{ mA}; V_I = V_{IL}$	-	0.3			
V_{OLA}	Output LOW Voltage	Output LOW Voltage	Output LOW Voltage	0.9 – 4.5	2.3		-	0.4	٧
			2.7	$I_{OL} = 12 \text{ mA}; V_I = V_{IL}$	-	0.4			
			2.3		-	0.6			
	3.0	3.0	$I_{OL} = 18 \text{ mA}; V_I = V_{IL}$	-	0.4				
			3.0	I _{OL} = 24 mA; V _I = V _{IL}	-	0.55			
II	Input Leakage Current	0.9 – 4.5	0.9 – 4.5	V _I = V _{CCB} or GND	-	±1.0	μΑ		
I _{OFF}	Power-Off Leakage Current	0	0	V_{I} or $V_{O} = 0$ to 4.5 V	-	±3.0	μΑ		
I _{CCA} , I _{CCB}	Quiescent Supply Current	0.9 – 4.5	0.9 – 4.5	$V_I = V_{CCB}$ or GND; $I_O = 0$	-	±1.5	μΑ		
CCA + ICCB	Quiescent Supply Current	0.9 – 4.5	0.9 – 4.5	$V_I = V_{CCB}$ or GND; $I_O = 0$	-	±3.0	μΑ		
ΔI_{CCB}	Increase in I_{CC} per Input Voltage, Other Inputs at V_{CC} or GND	4.5	4.5	$V_I = V_{CCB} - 0.6 \text{ V};$ $V_I = V_{CCB} \text{ or GND}$	-	500.0	μΑ		

AC ELECTRICAL CHARACTERISTICS

							–40°C t	o +85°C					
							V _{CC}	_A (V)					
			1	.5	1	.8	2	.8	3	.3	4	.5	
Symbol	Parameter	V _{CCB} (V)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	Propagation Daloy	1.5	-	5.2	-	4.5	-	3.9	-	3.8	-	3.7	
	Propagation Delay	1.8	_	4.9	-	4.3	-	3.8	-	3.4	-	3.5	20
t _{PLH} , t _{PHL}	B _n to A _n	2.8	-	4.7	-	4.2	-	3.4	-	3.3	-	3.2	nS
4PHL	$(C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega) \text{ (Note 2)}$	3.3	-	4.6	-	4.0	-	3.4	-	3.3	-	3.1	
	11[- 2 KS2) (NOTE 2)	4.5	-	4.6	-	4.0	_	3.5	_	3.3	-	3.1	
		1.5	-	5.6	-	4.8	-	4.2	-	4.2	-	4.5	nS
	Propagation Delay	1.8	-	5.4	-	4.6	-	3.9	-	3.9	-	3.8	
t _{PLH} , t _{PHL}	B _n to A _n	2.8	-	5.2	-	4.4	-	3.7	-	3.7	-	3.3	
*FFIL		3.3	-	5.1	-	4.1	_	3.6	-	3.6	-	3.2	
	$(C_L = 30 \text{ pF}, R_L = 2 \text{ k}\Omega) \text{ (Note 2)}$	4.5	-	5.1	-	3.8	-	3.1	-	3.0	-	3.0	
		1.5	-	0.2	-	0.2	_	0.2	_	0.2	-	0.2	nS
		1.8	-	0.2	-	0.2	-	0.2	-	0.2	-	0.2	
tostH,	Output to Output Skew Time	2.8	-	0.2	-	0.2	-	0.2	-	0.2	-	0.2	1
toshl	(Notes 3 & 4)	3.3	-	0.2	-	0.2	-	0.2	-	0.2	-	0.2	1
		4.5	-	0.2	-	0.2	-	0.2	-	0.2	-	0.2	

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = 25 °			
Symbol	Parameter	V _{CCB} (V)	V _{CCA} (V)	Test Conditions	Тур	Unit
V _{OLPA}	Dynamic Low Level Quiet An	1.8	1.8	C _L = 30 pF	0.1	V
	Output (overshoot)	2.8	2.8	$V_{IL} = 0V$ $V_{IH} = V_{CCB}$	0.25	
		3.6	3.6	VIH = VCCB	0.35	
V _{OLVA}	Dynamic Low Level Quiet An	1.8	1.8	C _L = 30 pF	-0.1	V
	Output (ground bounce)	2.8	2.8	$V_{IL} = 0V$ $V_{IH} = V_{CCB}$	-0.25	
		3.6	3.6	VIH = VCCB	-0.35	
V _{OHVA}	Dynamic Low Level Quiet An	1.8	1.8	C _L = 30 pF	1.6	V
	Output	2.8	2.8	$V_{IL} = 0V$ $V_{IH} = V_{CCB}$	2.6	
		3.6	3.6	™ - VCCB	3.3	

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 5)	Unit
C _{IN}	Input Capacitance	$V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCB}$	3.5	pF
C _O	Output Capacitance	$V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCB}$	5.0	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	$V_{CCA} = V_{CCB} = 1.8$, 2.8 or 3.6 V, $V_I = 0$ V or V_{CCB} , $f = 1$ MHz	28	pF

Propagation delays defined per Figure 3.
 Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (toslh = | tplhm - tplhn |, toshl = | tphhm - tphhn |).

^{4.} Parameter guaranteed by design.

^{5.} Typical values are at T_A = +25°C
6. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC(operating)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}/4 (per circuit).

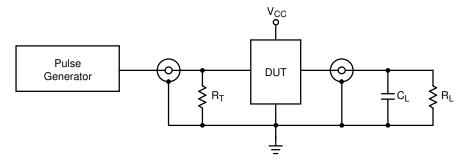


Figure 3. AC (Propagation Delay) Test Circuit

Test
t _{PLH} , t _{PHL} , t _{OSLH} , t _{OSHL}
C_L = 15 pF / 30 pF or equivalent (includes probe and jig capacitance) R_L = 2 k Ω or equivalent Z_{OUT} of pulse generator = 50 Ω R_T = 50 Ω

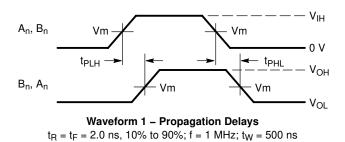
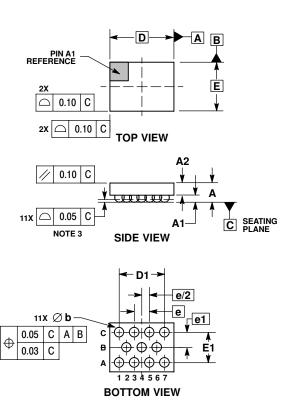



Figure 4. AC Waveforms

	V _{CC}
Symbol	1.5 V, 1.8 V, 2.8 V, 3.3 V, 4.5 V
V _{mA}	V _{CCA} /2
V _{mB}	V _{CCB} /2

PACKAGE DIMENSIONS

11 PIN FLIP-CHIP, 2.04x1.41, 0.5P CASE 766AJ-01 **ISSUE O**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

	MILLIMETERS	
DIM	MIN	MAX
Α		0.66
A1	0.21	0.27
A2	0.33	0.39
b	0.29	0.34
D	2.04 BSC	
D1	1.50 BSC	
Е	1.41	BSC
E1	0.86	BSC
е	0.50	BSC
e1	0.43	BSC

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative