

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

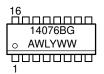
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

4-Bit D-Type Register with Three-State Outputs

The MC14076B 4–Bit Register consists of four D–type flip–flops operating synchronously from a common clock. OR gated output–disable inputs force the outputs into a high–impedance state for use in bus organized systems. OR gated data–disable inputs cause the Q outputs to be fed back to the D inputs of the flip–flops. Thus they are inhibited from changing state while the clocking process remains undisturbed. An asynchronous master root is provided to clear all four flip–flops simultaneously independent of the clock or disable inputs.

Features

- Three-State Outputs with Gated Control Lines
- Fully Independent Clock Allows Unrestricted Operation for the Two Modes: Parallel Load and Do Nothing
- Asynchronous Master Reset
- Four Bus Buffer Registers
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant


ON Semiconductor®

http://onsemi.com

SOIC-16 D SUFFIX CASE 751B

MARKING DIAGRAM

= Assembly Location

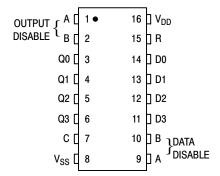
 $\begin{array}{ll} WL,\,L &= Wafer\,Lot\\ YY,\,Y &= Year\\ WW,\,W &= Work\,Week\\ G &= Pb-Free\,Package \end{array}$

ORDERING INFORMATION

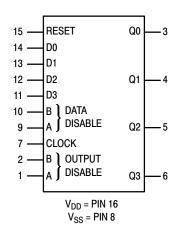
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.


Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

^{1.} Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

PIN ASSIGNMENT

BLOCK DIAGRAM

FUNCTION TABLE

		Data Disable		Data Disable		Data	Output
Reset	Clock	Α	В	D	Q		
1	Х	Х	Х	Х	0		
0	0	Х	Х	Х	Q_n		
0		1	Х	Х	Q_n		
0		Х	1	Х	Q_n		
0		0	0	0	0		
0		0	0	1	1		

When either output disable A or B (or both) is (are) high the output is disabled to the high-impedance state; however sequential operation of the flip-flops is not affected. X = Don't Care.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

				-55	5°C		25°C		125	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		I _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	ı	-	ı	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Notes (Dynamic plus Quiescer Per Package) (C _L = 50 pF on all outpu buffers switching)	nt,	I _T	5.0 10 15			$I_{T} = (1$.75 μA/kHz) .50 μA/kHz) .25 μA/kHz)	f + I _{DD}			μAdc
Three-State Leakage Curre	ent	I _{TL}	15	_	±0.1	_	±0.0001	±0.1	_	±3.0	μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

3. The formulas given are for the typical characteristics only at 25°C.

4. To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002.

SWITCHING CHARACTERISTICS (Note 5) (C_L = 50 pF, T_A = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns} $ $t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns} $ $t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns} $	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time Clock to Q t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 215 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 92 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 65 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	300 125 90	600 250 180	ns
Reset to Q t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 215 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 92 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 65 ns		5.0 10 15	- - -	300 125 90	600 250 180	
3-State Propagation Delay, Output "1" or "0" to High Impedance	t _{PHZ} , t _{PLZ}	5.0 10 15	- - -	150 60 45	300 120 90	ns
3–State Propagation Delay, High Impedance to "1" or "0" Level	t _{PZH} , t _{PZL}	5.0 10 15	- - -	200 80 60	400 160 120	ns
Clock Pulse Width	t _{WH}	5.0 10 15	260 110 80	130 55 40	- - -	ns
Reset Pulse Width	t _{WH}	5.0 10 15	370 150 110	185 75 55	- - -	ns
Data Setup Time	t _{su}	5.0 10 15	30 10 4	15 5 2	- - -	ns
Data Hold Time	t _h	5.0 10 15	130 60 50	65 30 25	- - -	ns
Data Disable Setup Time	t _{su}	5.0 10 15	220 80 50	110 40 25	- - -	ns
Clock Pulse Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15	- - -	- - -	15 5 4	μs
Clock Pulse Frequency	f _{cl}	5.0 10 15	- - -	3.6 9.0 12	1.8 4.5 6.0	MHz

^{5.} The formulas given are for the typical characteristics only at 25°C.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

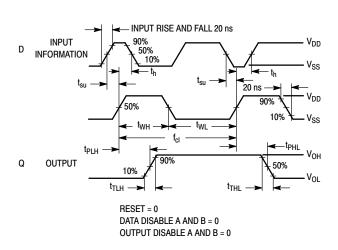


Figure 1. Timing Diagram

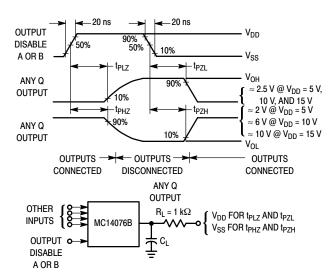
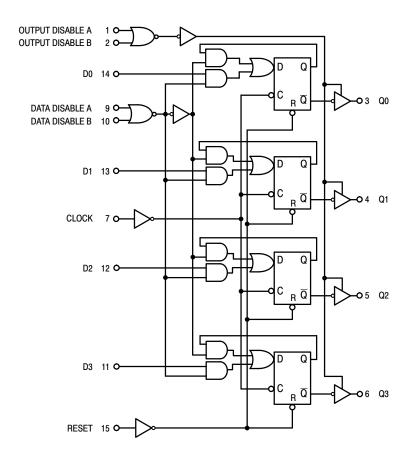
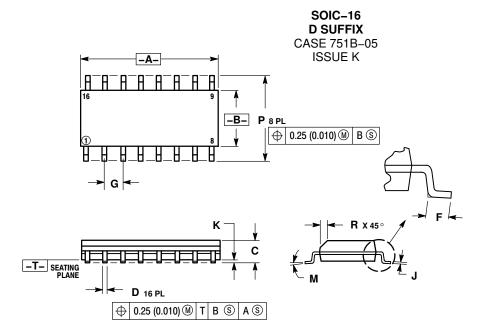



Figure 2. Three–State Propagation Delay Waveshape and Circuit

EQUIVALENT FUNCTIONAL BLOCK DIAGRAM

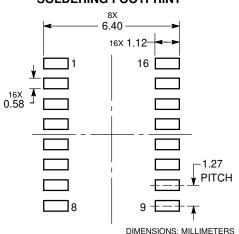


ORDERING INFORMATION

Device	Package	Shipping [†]		
MC14076BDG	SOIC-16 (Pb-Free)	48 Units / Rail		
MC14076BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel		
NLV14076BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050 BSC			
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, a customer application in which the product is presented in surface and the support of expense customic life of the resemble of the support of expense customic life of the resemble of the resemble of the support of expense customic life of the resemble of the resemble of the support of expense customic life of the resemble of the support of expense customic life of the resemble of the resemble of the support of expense customic life of the resemble of the support of expense customic life of the resemble of the support of expense customic life of the resemble of the support of expense customic life of the resemble of the support of expense customic life of the resemble of the support of expense o or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative