imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

8-Stage Shift/Store Register with Three-State Outputs

The MC14094B combines an 8-stage shift register with a data latch for each stage and a 3-state output from each latch.

Data is shifted on the positive clock transition and is shifted from the seventh stage to two serial outputs. The Q_S output data is for use in high-speed cascaded systems. The Q_S output data is shifted on the following negative clock transition for use in low-speed cascaded systems.

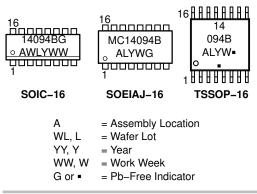
Data from each stage of the shift register is latched on the negative transition of the strobe input. Data propagates through the latch while strobe is high.

Outputs of the eight data latches are controlled by 3-state buffers which are placed in the high-impedance state by a logic Low on Output Enable.

Features

- 3-State Outputs
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range
- Input Diode Protection
- Data Latch
- Dual Outputs for Data Out on Both Positive and Negative Clock Transitions
- Useful for Serial-to-Parallel Data Conversion
- Pin-for-Pin Compatible with CD4094B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})



ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
PD	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature (8–Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

PIN ASSIGNMENT

STROBE	1•	16	D V _{DD}
DATA [2	15	
CLOCK [3	14] Q5
Q1 [4	13] Q6
Q2 [5	12] Q7
Q3 [6	11] Q8
Q4 [7	10] Q′s
V _{SS} [8	9] Q _S

TRUTH TABLE

	Output			Parallel Outputs		Serial C	Dutputs
Clock	Enable	Strobe	Data	Q1	Q _N	Q _S *	Q′ _S
~	0	Х	Х	Z	Z	Q7	No Chg.
~	0	Х	Х	Z	Z	No Chg.	Q7
~	1	0	Х	No Chg.	No Chg.	Q7	No Chg.
7	1	1	0	0	Q _N -1	Q7	No Chg.
7	1	1	1	1	Q _N -1	Q7	No Chg.
~	1	1	1	No Chg.	No Chg.	No Chg.	Q7

Z = High Impedance X = Don't Care

* At the positive clock edge, information in the 7th shift register stage is transferred to Q8 and QS.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14094BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14094BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14094BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC14094BDTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14094BDTR2G*	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
MC14094BFELG	SOEIAJ–16 (Pb–Free)	2000 Units / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

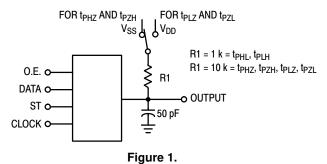
Capable.

ELECTRICAL CHARACTERISTICS	(Voltages Referenced to V _{SS})
----------------------------	---

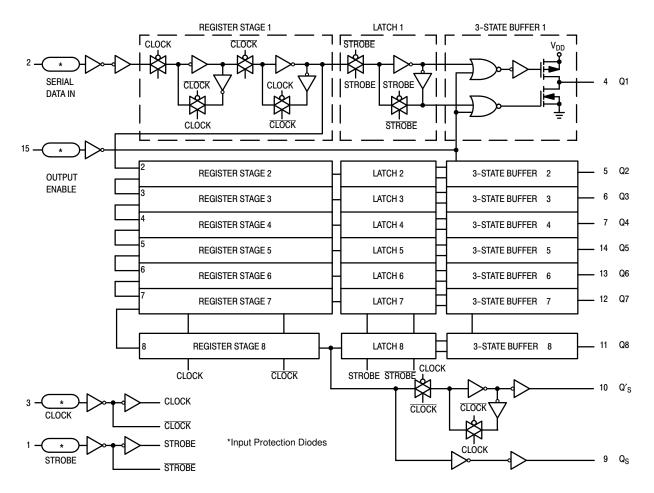
Characteristic						25°C		125°C			
Output Voltage "0" I		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage "0" L $V_{in} = V_{DD}$ or 0	evel	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
"1" L $$V_{in}=0 \mbox{ or } V_{DD}$	evel	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
$\label{eq:VO} \begin{array}{l} \mbox{Input Voltage} & \mbox{``0" L} \\ \mbox{(V}_{O} = 4.5 \mbox{ or } 0.5 \mbox{ Vdc}) \\ \mbox{(V}_{O} = 9.0 \mbox{ or } 1.0 \mbox{ Vdc}) \\ \mbox{(V}_{O} = 13.5 \mbox{ or } 1.5 \mbox{ Vdc}) \end{array}$	evel	V _{IL}	5.0 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
"1" L $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	evel	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11		Vdc
$\begin{array}{l} \mbox{Output Drive Current} \\ (V_{OH} = 2.5 \mbox{ Vdc}) & So \\ (V_{OH} = 4.6 \mbox{ Vdc}) \\ (V_{OH} = 9.5 \mbox{ Vdc}) \\ (V_{OH} = 13.5 \mbox{ Vdc}) \end{array}$	urce	I _{ОН}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8		-1.7 -0.36 -0.9 -2.4		mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- -	0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15		5.0 10 20	_ _ _	0.005 0.010 0.015	5.0 10 20		150 300 600	μAdc
Total Supply Current (Notes 3 & (Dynamic plus Quiescent, Per Package) $(C_L = 50 \text{ pF on all outputs, al buffers switching})$		ΙŢ	5.0 10 15		<u>.</u>	I _T = (I.1 μΑ/kHz) f 14 μΑ/kHz) f 40 μΑ/kHz) f	+ I _{DD}	<u>.</u>	<u>.</u>	μAdc
3-State Output Leakage Current		I _{TL}	15	-	±0.1	-	±0.0001	±0.1	-	±3.0	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

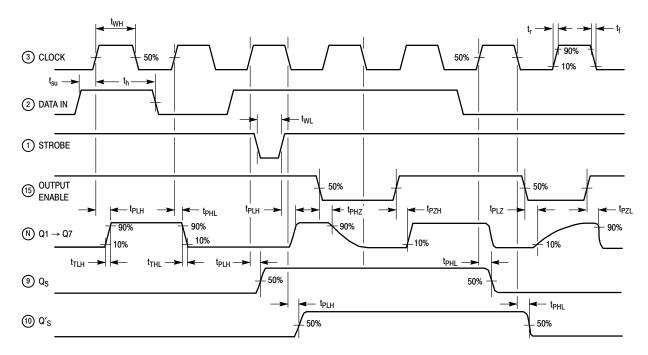
 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$


where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

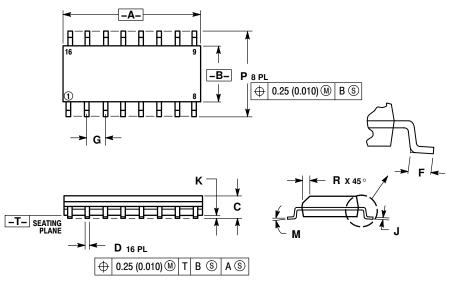
SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25° C)


Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time t_{TLH} , $t_{THL} = (1.35 \text{ ns/pF}) C_L + 33 \text{ ns}$ t_{TLH} , $t_{THL} = (0.6 \text{ ns/pF}) C_L + 20 \text{ ns}$ t_{TLH} , $t_{THL} = (0.4 \text{ ns/pF}) C_L + 20 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15		100 50 40	200 100 80	ns
Propagation Delay Time (Figure 1) Clock to Serial out QS t_{PLH} , $t_{PHL} = (0.90 \text{ ns/pF}) \text{ C}_L + 305 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.36 \text{ ns/pF}) \text{ C}_L + 107 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF}) \text{ C} \text{ L} + 82 \text{ ns}$	tplh, tphl	5.0 10 15	- - -	350 125 95	600 250 190	ns
Clock to Serial out Q'S t_{PLH} , $t_{PHL} = (0.90 \text{ ns/pF}) \text{ C}_{L} + 350 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.36 \text{ ns/pF}) \text{ C}_{L} + 149 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF}) \text{ C}_{L} + 62 \text{ ns}$		5.0 10 15	- - -	230 110 75	460 220 150	
Clock to Parallel out t_{PLH} , $t_{PHL} = (0.90 \text{ ns/pF}) \text{ C}_{L} + 375 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.35 \text{ ns/pF}) \text{ C}_{L} + 177 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF}) \text{ C}_{L} + 122 \text{ ns}$		5.0 10 15	- - -	420 195 135	840 390 270	
Strobe to Parallel out t_{PLH} , $t_{PHL} = (0.90 \text{ ns/pF}) \text{ C}_L + 245 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.36 \text{ ns/pF}) \text{ C} \text{ L} + 127 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.26 \text{ ns/pF}) \text{ C}_L + 87 \text{ ns}$		5.0 10 15	- - -	290 145 100	580 290 200	
Output Enable to Output t_{PHZ} , $t_{PZL} = (0.90 \text{ ns/pF}) \text{ C}_L + 95 \text{ ns}$ t_{PHZ} , $t_{PZL} = (0.36 \text{ ns/PF}) \text{ C}_L + 57 \text{ ns}$ t_{PHZ} , $t_{PZL} = (0.26 \text{ ns/pF}) \text{ C}_L + 42 \text{ ns}$	t _{PHZ} , t _{PZL}	5.0 10 15		140 75 55	280 150 110	
$ t_{PLZ}, t_{PZH} = (0.90 \text{ ns/pF}) \text{ C}_{L} + 180 \text{ ns} \\ t_{PLZ}, t_{PZH} = (0.36 \text{ ns/pF}) \text{ C}_{L} + 77 \text{ ns} \\ t_{PLZ}, t_{PZH} = (0.26 \text{ ns/pF}) \text{ C}_{L} + 57 \text{ ns} $	t _{PLZ} , t _{PZH}	5.0 10 15		225 95 70	450 190 140	
Setup Time Data in to Clock	t _{su}	5.0 10 15	125 55 35	60 30 20	_ _ _	ns
Hold Time Clock to Data	t _h	5.0 10 15	0 20 20	- 40 - 10 0		ns
Clock Pulse Width, High	twH	5.0 10 15	200 100 83	100 50 40	_ _ _	ns
Clock Rise and Fall Time	t _{r(cl)} t _{f(cl)}	5 10 15	_ _ _	- - -	15 5.0 4.0	μs
Clock Pulse Frequency	f _{cl}	5.0 10 15	_ _ _	2.5 5.0 6.0	1.25 2.5 3.0	MHz
Strobe Pulse Width	t _{WL}	5.0 10 15	200 80 70	100 40 35	- - -	ns

The formulas given are for the typical characteristics only at 25°C.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

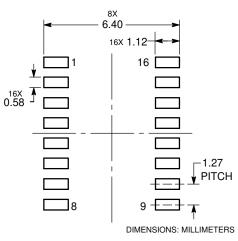

3-STATE TEST CIRCUIT

BLOCK DIAGRAM



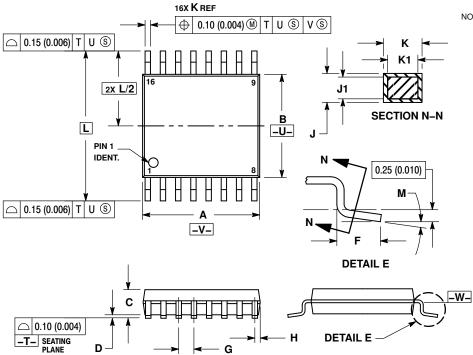
DYNAMIC TIMING DIAGRAM

PACKAGE DIMENSIONS


SOIC-16 **D SUFFIX** CASE 751B-05 ISSUE K

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD DEDITOLISION
- DIMENSIONS A AND & DO NOT INCLUDE MICLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION 4. 5.
- SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MIN MAX		MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050) BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0 °	7°	0 °	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

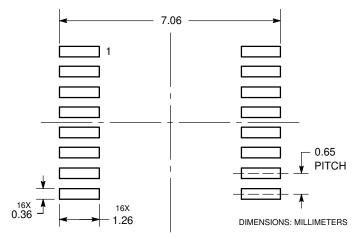

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-16 DT SUFFIX CASE 948F **ISSUE B**

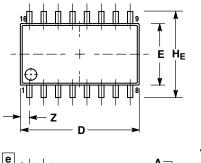
G


D

NOTES:

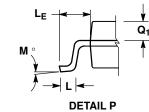
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08
- DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

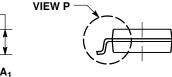
	MILLIN	IETERS	INC	HES
DIM	MIN MAX		MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
к	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252	
М	0 °	8 °	0 °	8 °


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


SOEIAJ-16 F SUFFIX CASE 966 ISSUE A



b

0.13 (0.005) 🔘

 \oplus

0.10 (0.004)

 \cap

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER
- A DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE
 MEASURED AT THE PARTING LINE. MOLD FLASH
 OP DODTUDIONO CUMUL NOT EXCEPT A 15
- OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES	
DIM	MIN	MIN MAX		MAX	
Α		2.05		0.081	
A ₁	0.05	0.20	0.002	0.008	
b	0.35	0.50	0.014	0.020	
C	0.10	0.20	0.007	0.011	
D	9.90	10.50	0.390	0.413	
E	5.10	5.45	0.201	0.215	
е	1.27	BSC	0.050 BSC		
HE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LE	1.10	1.50	0.043	0.059	
Μ	0 °	10 °	0 °	10 °	
Q ₁	0.70	0.90	0.028	0.035	
Z		0.78		0.031	

ON Semiconductor and the use are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product for any such unintended or unauthorized application. Buyer shall indemnity and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This lite

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative