Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # Quad 2-Channel Analog Multiplexer/Demultiplexer The MC14551B is a digitally-controlled analog switch. This device implements a 4PDT solid state switch with low ON impedance and very low OFF Leakage current. Control of analog signals up to the complete supply voltage range can be achieved. ### **Features** - Triple Diode Protection on All Control Inputs - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Analog Voltage Range (V_{DD} V_{EE}) = 3.0 to 18 V Note: V_{EE} must be ≤ V_{SS} - Linearized Transfer Characteristics - Low Noise 12 nV $\sqrt{\text{Cycle}}$, $f \ge 1.0$ kHz typical - For Low R_{ON}, Use The HC4051, HC4052, or HC4053 High–Speed CMOS Devices - Switch Function is Break Before Make - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - This Device is Pb-Free and is RoHS Compliant ### **MAXIMUM RATINGS** | Parameter | Symbol | Value | Unit | |--|------------------------------------|-----------------------------------|------| | DC Supply Voltage Range (Referenced to V_{EE} , $V_{SS} \ge V_{EE}$) | V _{DD} | - 0.5 to + 18.0 | ٧ | | Input or Output Voltage (DC or Transient) (Referenced to V _{SS} for Control Input and V _{EE} for Switch I/O) | V _{in} , V _{out} | – 0.5 to V _{DD}
+ 0.5 | ٧ | | Input Current (DC or Transient),
per Control Pin | l _{in} | ±10 | mA | | Switch Through Current | I _{sw} | ±25 | mA | | Power Dissipation, per Package (Note 1) | P _D | 500 | mW | | Ambient Temperature Range | T _A | - 55 to + 125 | °C | | Storage Temperature Range | T _{stg} | - 65 to + 150 | °C | | Lead Temperature (8–Second Soldering) | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: "D/DW" Package: –7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ for control inputs and $V_{EE} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ for Switch I/O. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} , V_{EE} or V_{DD}). Unused outputs must be left open. # ON Semiconductor® http://onsemi.com SOIC-16 D SUFFIX CASE 751B #### **PIN ASSIGNMENT** | W1 [| 1 ● | 16 | V _{DD} | |-------------------|-----|----|-----------------| | X0 [| 2 | 15 |] wo | | X1 [| 3 | 14 | þ w | | Χ[| 4 | 13 | j z | | Υ[| 5 | 12 |] Z1 | | Y0 [| 6 | 11 |] Z0 | | V _{EE} [| 7 | 10 |) Y1 | | V _{SS} [| 8 | 9 | CONTROL | | | | | | ### **MARKING DIAGRAM** A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb–Free Package ### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. | V _{DD} = Pin 16 | |--------------------------| | $V_{SS} = Pin 8$ | | $V_{FF} = Pin 7$ | | Control | ON | | | | | | |---------|-------------|--|--|--|--|--| | 0 | W0 X0 Y0 Z0 | | | | | | | 1 | W1 X1 Y1 Z1 | | | | | | NOTE: Control Input referenced to V_{SS}, Analog Inputs and Outputs reference to V_{EE}. V_{EE} must be \leq V_{SS}. # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|-----------------------| | MC14551BDG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC14551BDR2G | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | | NLV14551BDR2G* | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. ### **ELECTRICAL CHARACTERISTICS** | | | | | - 5 | − 55°C 25°C | | 125°C | | | | | |--|-----------------|--|---------------------|------------------|----------------------|------------------|-------------------------------------|--------------------|------------------|--------------------|------------------| | Characteristic | V _{DD} | Test Conditions | Symbol | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | SUPPLY REQUIREMENTS (Voltages Referenced to V _{EE}) | | | | | | | | | | | | | Power Supply Voltage
Range | - | $V_{DD} - 3.0 \ge V_{SS} \ge V_{EE}$ | V _{DD} | 3.0 | 18 | 3.0 | - | 18 | 3.0 | 18 | V | | Quiescent Current Per
Package | 5.0
10
15 | $ \begin{array}{l} \text{Control Inputs: V}_{\text{in}} = \\ \text{V}_{\text{SS}} \text{ or V}_{\text{DD}}, \\ \text{Switch I/O: V}_{\text{EE}} \leq \text{V}_{\text{I/O}} \\ \leq \text{V}_{\text{DD}}, \text{ and } \Delta \text{V}_{\text{switch}} \leq \\ \text{500 mV (Note 3)} \end{array} $ | I _{DD} | -
-
- | 5.0
10
20 | -
-
- | 0.005
0.010
0.015 | 5.0
10
20 | -
-
- | 150
300
600 | μΑ | | Total Supply Current
(Dynamic Plus Quiescent,
Per Package) | 5.0
10
15 | $\begin{split} T_A &= 25^{\circ}\text{C only (The channel component,} \\ (V_{in} - V_{out})/R_{on}, \text{ is} \\ \text{not included.)} \end{split}$ | I _{D(AV)} | | | Typical | (0.07 μA/
(0.20 μA/
(0.36 μA/ | kHz) f + | I _{DD} | | μΑ | | CONTROL INPUT (Voltages | Refere | nced to V _{SS}) | | | | | | | | | | | Low-Level Input Voltage | 5.0
10
15 | R _{on} = per spec,
I _{off} = per spec | V _{IL} | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | V | | High-Level Input Voltage | 5.0
10
15 | R _{on} = per spec,
I _{off} = per spec | V _{IH} | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | -
-
- | 3.5
7.0
11 | -
-
- | V | | Input Leakage Current | 15 | V _{in} = 0 or V _{DD} | I _{in} | - | ±0.1 | _ | ±0.00001 | ±0.1 | - | ±1.0 | μΑ | | Input Capacitance | - | | C _{in} | - | - | - | 5.0 | 7.5 | - | _ | pF | | SWITCHES IN/OUT AND CO | OMMO | S OUT/IN — W, X, Y, Z (\ | /oltages Re | eferenc | ed to V _E | E) | • | • | , | | , | | Recommended Peak-to-
Peak Voltage Into or Out
of the Switch | _ | Channel On or Off | V _{I/O} | 0 | V _{DD} | 0 | - | V _{DD} | 0 | V _{DD} | V _{p-p} | | Recommended Static or
Dynamic Voltage Across
the Switch (Note 3)
(Figure 3) | - | Channel On | ΔV_{switch} | 0 | 600 | 0 | - | 600 | 0 | 300 | mV | | Output Offset Voltage | - | V _{in} = 0 V, No Load | V _{OO} | - | - | _ | 10 | - | - | - | μV | | ON Resistance | 5.0
10
15 | $\begin{array}{l} \Delta V_{switch} \leq 500 \text{ mV} \\ \text{(Note 3),} \\ V_{in} = V_{IL} \text{ or } V_{IH} \\ \text{(Control), and } V_{in} = 0 \text{ to} \\ V_{DD} \text{ (Switch)} \end{array}$ | R _{on} | _ | 800
400
220 | -
-
- | 250
120
80 | 1050
500
280 | -
-
- | 1200
520
300 | Ω | | ΔON Resistance Between Any Two Channels in the Same Package | 5.0
10
15 | | ΔR_{on} | -
-
- | 70
50
45 | -
-
- | 25
10
10 | 70
50
45 | -
-
- | 135
95
65 | Ω | | Off-Channel Leakage
Current (Figure 8) | 15 | V _{in} = V _{IL} or V _{IH}
(Control) Channel to
Channel or Any One
Channel | l _{off} | - | ±100 | - | ±0.05 | ±100 | - | ±1000 | nA | | Capacitance, Switch I/O | - | Switch Off | C _{I/O} | - | - | - | 10 | - | - | - | pF | | Capacitance, Common O/I | _ | | C _{O/I} | _ | - | _ | 17 | - | - | - | pF | | Capacitance, Feedthrough (Channel Off) | 1 1 | Pins Not Adjacent
Pins Adjacent | C _{I/O} | 1 1 | -

 - | 1 1 | 0.15
0.47 | - | | | pF | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance. ^{3.} For voltage drops across the switch $(\Delta V_{switch}) > 600$ mV (> 300 mV at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.) # **ELECTRICAL CHARACTERISTICS** ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C, V_{EE} \leq V_{SS}$) | Characteristic | Symbol | V _{DD} – V _{EE}
Vdc | Min | Typ
(Note 4) | Max | Unit | |--|-------------------------------------|--|-----|-------------------|-------------------|------| | Propagation Delay Times Switch Input to Switch Output ($R_L = 10 \text{ k}\Omega$) t_{PLH} , $t_{PHL} = (0.17 \text{ ns/pF}) C_L + 26.5 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.08 \text{ ns/pF}) C_L + 11 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.06 \text{ ns/pF}) C_L + 9.0 \text{ ns}$ | t _{PLH} , t _{PHL} | 5.0
10
15 | - | 35
15
12 | 90
40
30 | ns | | Control Input to Output ($R_L = 10 \text{ k}\Omega$)
$V_{EE} = V_{SS}$ (Figure 4) | t _{PLH} , t _{PHL} | 5.0
10
15 | Ī | 350
140
100 | 875
350
250 | ns | | Second Harmonic Distortion $R_L = 10 \text{ k}\Omega$, $f = 1 \text{ kHz}$, $V_{in} = 5 \text{ V}_{p-p}$ | - | 10 | ı | 0.07 | - | % | | Bandwidth (Figure 5) $R_L = 1 \text{ k}\Omega, V_{in} = 1/2 (V_{DD} - V_{EE})_{p-p}, \\ 20 \text{ Log } (V_{out}/V_{in}) = -3 \text{ dB, } C_L = 50 \text{ pF}$ | BW | 10 | _ | 17 | - | MHz | | Off Channel Feedthrough Attenuation, Figure 5
$R_L = 1 \text{ k}\Omega, V_{in} = 1/2 (V_{DD} - V_{EE})_{p-p}, f_{in} = 55 \text{ MHz}$ | - | 10 | _ | - 50 | - | dB | | Channel Separation (Figure 6)
$R_L = 1 \text{ k}\Omega, V_{in} = 1/2 (V_{DD} - V_{EE})_{p-p}, f_{in} = 3 \text{ MHz}$ | - | 10 | - | - 50 | - | dB | | Crosstalk, Control Input to Common O/I, Figure 7 R1 = 1 k Ω , R _L = 10 k Ω , Control t _r = t _f = 20 ns | - | 10 | - | 75 | - | mV | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. Figure 1. Switch Circuit Schematic Figure 2. MC14551B Functional Diagram # **TEST CIRCUITS** Figure 3. ΔV Across Switch Figure 4. Propagation Delay Times, Control to Output Control input used to turn ON or OFF the switch under test. Figure 5. Bandwidth and Off-Channel Feedthrough Attenuation Figure 6. Channel Separation (Adjacent Channels Used for Setup) Figure 7. Crosstalk, Control Input to Common O/I Figure 8. Off Channel Leakage Figure 9. Channel Resistance (R_{ON}) Test Circuit # TYPICAL RESISTANCE CHARACTERISTICS Figure 10. V_{DD} @ 7.5 V, V_{EE} @ – 7.5 V Figure 11. V_{DD} @ 5.0 V, V_{EE} @ – 5.0 V Figure 12. V_{DD} @ 2.5 V, V_{EE} @ – 2.5 V Figure 13. Comparison at 25 $^{\circ}$ C, V_{DD} @ – V_{EE} ### **APPLICATIONS INFORMATION** Figure A illustrates use of the on–chip level converter detailed in Figure 2. The 0–to–5.0 V Digital Control signal is used to directly control a 9 V_{p-p} analog signal. The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5.0 \text{ V} = \text{logic}$ high at the control inputs; $V_{SS} = GND = 0 \text{ V} = \text{logic low}$. The maximum analog signal level is determined by V_{DD} and V_{EE} . The V_{DD} voltage determines the maximum recommended peak above V_{SS} . The V_{EE} voltage determines the maximum swing below V_{SS} . For the example, $V_{DD} - V_{SS} = 5.0 \text{ V}$ maximum swing above V_{SS} ; $V_{SS} - V_{EE} = 5.0 \text{ V}$ maximum swing below V_{SS} . The example shows a $\pm 4.5 \text{ V}$ signal which allows a 1/2 V margin at each peak. If voltage transients above V_{DD} and/or below V_{EE} are anticipated on the analog channels, external diodes (D_x) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping. The absolute maximum potential difference between V_{DD} and V_{EE} is 18 V. Most parameters are specified up to 15 V which is the recommended maximum difference between V_{DD} and V_{EE} . Balanced supplies are not required. However, V_{SS} must be greater than or equal to V_{EE} . For example, V_{DD} = + 10 V, V_{SS} = + 5.0 V, and V_{EE} = - 3.0 V is acceptable. See the table below. Figure B. External Schottky or Germanium Clipping Diodes # POSSIBLE SUPPLY CONNECTIONS | V _{DD}
In Volts | V _{SS}
In Volts | V _{EE}
In Volts | Control Inputs
Logic High/Logic Low
In Volts | Maximum Analog Signal Range
In Volts | |-----------------------------|-----------------------------|-----------------------------|--|--| | + 8 | 0 | -8 | + 8/0 | $+ 8 \text{ to} - 8 = 16 \text{ V}_{p-p}$ | | + 5 | 0 | – 12 | + 5/0 | + 5 to - 12 = 17 V _{p-p} | | + 5 | 0 | 0 | + 5/0 | + 5 to 0 = 5 V _{p-p} | | + 5 | 0 | - 5 | + 5/0 | $+ 5 \text{ to } - 5 = 10 \text{ V}_{p-p}$ | | + 10 | | - 5 | + 10/ + 5 | + 10 to - 5 = 15 V _{p-p} | ### PACKAGE DIMENSIONS ### SOIC-16 **D SUFFIX** CASE 751B-05 ISSUE K ### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.27 | BSC | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | P | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | ### **SOLDERING FOOTPRINT** ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, a customer application in which the product is presented in surface parameters in customer in surface. or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative