: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC14585B

4-Bit Magnitude Comparator

The MC14585B 4-Bit Magnitude Comparator is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit has eight comparing inputs (A3, B3, A2, B2, A1, B1, A0, B0), three cascading inputs $(\mathrm{A}<\mathrm{B}, \mathrm{A}=\mathrm{B}$, and $\mathrm{A}>\mathrm{B})$, and three outputs $(\mathrm{A}<\mathrm{B}$, $\mathrm{A}=\mathrm{B}$, and $\mathrm{A}>\mathrm{B}$). This device compares two 4-bit words (A and B) and determines whether they are "less than", "equal to", or "greater than" by a high level on the appropriate output. For words greater than 4 -bits, units can be cascaded by connecting outputs $(\mathrm{A}>\mathrm{B})$, $(\mathrm{A}<\mathrm{B})$, and $(\mathrm{A}=\mathrm{B})$ to the corresponding inputs of the next significant comparator. Inputs $(\mathrm{A}<\mathrm{B}),(\mathrm{A}=\mathrm{B})$, and $(\mathrm{A}>\mathrm{B})$ on the least significant (first) comparator are connected to a low, a high, and a low, respectively.

Applications include logic in CPU's, correction and/or detection of instrumentation conditions, comparator in testers, converters, and controls.

Features

- Diode Protection on All Inputs
- Expandable
- Applicable to Binary or 8421-BCD Code
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range
- Can be Cascaded - See Figure 3
- NLV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable*

- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to V_{DD} +0.5	V
Input or Output Current (DC or Transient) per Pin	$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	± 10	mA
Power Dissipation per Package (Note 1)	P_{D}	500	mW
Ambient Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (8-Second Soldering)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$ This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

PIN ASSIGNMENT

MARKING DIAGRAM

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { YY, Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G } & =\text { Pb-Free Package }
\end{array}
$$

ORDERING INFORMATION

Device	Package	Shipping †
MC14585BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14585BDR2G	SOIC-16 (Pb-Free)	2500/Tape \& Reel
NLV14585BDR2G*	SOIC-16 (Pb-Free)	2500/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC14585B

BLOCK DIAGRAM

$V_{D D}=P I N 16$
$V_{S S}=P I N 8$

TRUTH TABLE ($\mathrm{x}=$ Don't Care)

Inputs							Outputs		
Comparing				Cascading					
A3, B3	A2, B2	A1, B1	A0, B0	A $<$ B	A = B	A $>$ B	A $<$ B	A = B	A $>$ B
A3 > B3	x	x	X	X	X	X	0	0	1
$A 3=B 3$	$\mathrm{A} 2>\mathrm{B} 2$	X	X	X	X	X	0	0	1
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1>\mathrm{B} 1$	X	X	X	X	0	0	1
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{AO}>\mathrm{BO}$	X	X	X	0	0	1
A3 = B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{A} 0=\mathrm{B0}$	0	0	X	0	0	1
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	0	1	X	0	1	0
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	1	0	X	1	0	0
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	1	1	X	1	1	0
A3 = B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{A} 0<\mathrm{BO}$	X	X	X	1	0	0
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	A1 < B1	X	X	X	X	1	0	0
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2<\mathrm{B} 2$	X	X	X	X	X	1	0	0
A3 < B3	X	X	X	X	X	X	1	0	0

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $V_{\text {in }}=0 \text { or } V_{D D}$	V OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	0 0 0	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	5.0 10 15	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input Voltage "0" Level ($\mathrm{V}_{\mathrm{O}}=4.5$ or 0.5 Vdc) ($\mathrm{V}_{\mathrm{O}}=9.0$ or 1.0 Vdc) $\left(\mathrm{V}_{\mathrm{O}}=13.5\right.$ or 1.5 Vdc$)$ "1" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ ($\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}$)	${ }^{\mathrm{IOH}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{aligned} & -2.4 \\ & -0.51 \\ & -1.3 \\ & -3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	- - -	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	loL	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }_{\text {IT }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.2 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.8 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$					$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF : $I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right)$ Vfk where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in pF , $V=\left(V_{D D}-V_{S S}\right)$ in volts, f in $k H z$ is input frequency, and $k=0.001$.

SWITCHING CHARACTERISTICS (Note 5) ($\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	V_{DD}	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{t}_{\mathrm{L}},}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{T H L}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Turn-On, Turn-Off Delay Time $t_{\text {PLH }}, t_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+345 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+147 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+105 \mathrm{~ns}$	$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PH}}, \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 430 \\ & 180 \\ & 130 \end{aligned}$	$\begin{aligned} & 860 \\ & 360 \\ & 260 \end{aligned}$	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Inputs $(A>B)$ and $(A=B)$ high, and inputs $B 2, A 2, B 1$, $A 1, B 0, A 0$ and $(A<B)$ low.
f in respect to a system clock.
Figure 1. Dynamic Power Dissipation Signal Waveforms

Inputs $(A>B)$ and $(A=B)$ high, and inputs $B 3, A 3, B 2$, $A 2, B 1, A 1, A 0$, and $(A<B)$ low.

Figure 2. Dynamic Signal Waveforms

Figure 3. Cascading Comparators

MC14585B

LOGIC DIAGRAM

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

notes:

1. Dimensioning and tolerancing per ansi Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD protrusion.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE D SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE
DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN		MAX	MIN
MAX				
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050	
BSC				
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0	0°
P	5.80	6.20	0.229	7°
R	0.25	0.50	0.010	0.019

> ON Semiconductor and the ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

