

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual Unbuffered Inverter

The NL27WZU04 is a high performance dual unbuffered inverter operating from a 1.65 to 5.5 V supply. These devices are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high-input impedance amplifier. For digital applications, the NL27WZ04 is recommended.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- Unbuffered for Crystal Oscillator and Analog Applications
- LVCMOS Compatible
- Source/Sink ±16 mA @ 4.5 V V_{CC}
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Chip Complexity: FET = 72; Equivalent Gate = 18
- These Devices are Pb-Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

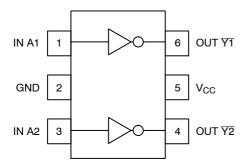


Figure 1. Pinout (Top View)

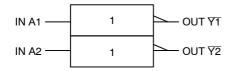


Figure 2. Logic Symbol

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SC-88/SOT-363/SC-70 DF SUFFIX CASE 419B

TSOP-6 DT SUFFIX CASE 318G

M6 = Device Code
M = Date Code*
• = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT

Pin	Function	
1	IN A1	
2	GND	
3	IN A2	
4	OUT Y2	
5	V _{CC}	
6	OUT Y1	

FUNCTION TABLE

A Input	▼ Output
L	Н
Н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Characteristics	Value	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	$-0.5 \le V_I \le V_{CC}$	V
Vo	DC Output Voltage	-0.5 to +7.0	V
I _{IK}	DC Input Diode Current VI < GND	-50	mA
I _{OK}	DC Output Diode Current $V_O < GND$ $V_O > V_{CC}$	-50 +50	mA
Io	DC Output Sink Current	±50	mA
I _{CC}	DC Supply Current per Supply Pin	±100	mA
I _{GND}	DC Ground Current per Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
P _D	Power Dissipation in Still Air SC–88, TSOP–6	200	mW
$\theta_{\sf JA}$	Thermal Resistance SC–88, TSOP–6	333	°C/W
TL	Lead Temperature, 1 mm from Case for 10 s	260	°C
TJ	Junction Temperature under Bias	+150	°C
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	> 2000 > 200 N/A	V
I _{Latchup}	Latchup Performance Above V _{CC} and Below GND at 85°C (Note 4)	±500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

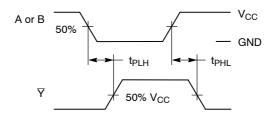
- 1. Tested to EIA/JESD22-A114-A.
- 2. Tested to EIA/JESD22-A115-A.
- 3. Tested to JESD22-C101-A.
- 4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	1.65 1.5	5.5 5.5	V
VI	Input Voltage	0	5.5	V
Vo	Output Voltage (High or LOW State)		5.5	V
T _A	Operating Free–Air Temperature	-55	+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ $V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0 0	20 10 5	ns/V

DC ELECTRICAL CHARACTERISTICS

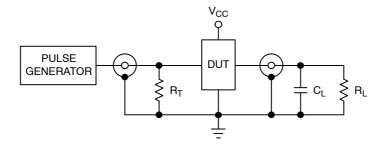
	V _{CC} T _A = 25°C		C	-55°C ≤ T	_A ≤ 125°C				
Symbol	Symbol Parameter Condi	Condition	(V)	Min	Тур	Max	Min	Max	Units
V _{IH}	High-Level Input Voltage		1.65 to 1.85	0.85 V _{CC}			0.85 V _{CC}		V
			2.3 to 5.5	0.8 V _{CC}			0.8 V _{CC}		
V _{IL}	Low-Level Input Voltage		1.65 to 1.85			0.15 V _{CC}		0.15 V _{CC}	V
			2.3 to 5.5			0.2 V _{CC}		0.2 V _{CC}	
V _{OH}	High-Level Output Voltage V _{IN} = V _{IL}	I _{OH} = -100 μA	1.65 to 5.5	V _{CC} -0.1			V _{CC} -0.1		V
	V _{IN} = GND	I _{OH} = -3 mA	1.65	1.29	1.52		1.29		
		I _{OH} = -4 mA	2.3	1.9	2.1		1.9		
		I _{OH} = -6 mA	2.7	2.2	2.3		2.2		
		I _{OH} = -8 mA	3.0	2.4	2.6		2.4		
		I _{OH} = -12 mA	3.0	2.3	2.5		2.3		
		I _{OH} = -16 mA	4.5	3.8	4.2		3.8		
V _{OL}	Low-Level Output Voltage V _{IN} = V _{IH}	I _{OL} = 100 μA	1.65 to 5.5			0.1		0.1	V
	V _{IN} = V _{CC}	IOL = 3 mA	1.65		0.08	0.24		0.24	
		I _{OL} = 4 mA	2.3		0.12	0.3		0.3	
		I _{OL} = 6 mA	2.7		0.20	0.4		0.4	
		I _{OL} = 8 mA	3.0		0.24	0.4		0.4	
		I _{OL} = 12 mA	3.0		0.26	0.55		0.55	
		I _{OL} = 16 mA	4.5		0.31	0.55		0.55	
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	0 to 5.5			±0.1		±1.0	μΑ
l _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0			1		10	μА
I _{CC}	Maximum Quiescent Supply Current	V _{IN} = 5.5 V or GND	5.5			1.0		10	μΑ


AC ELECTRICAL CHARACTERISTICS t_R = t_F = 2.5 ns; C_L = 50 pF; R_L = 500 Ω

				T _A = 25°C		$-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$			
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Units
t _{PLH}	Propagation Delay	$R_L = 1 \text{ M}\Omega, C_L = 50 \text{ pF}$	1.8 ± 0.15	1.5	5.5	1.8	1.5	11.0	ns
t _{PHL}	Input A to Y (Figure 3 and 4)	$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	2.5 ± 0.2	1.2	3.3	5.7	1.2	6.3	
		$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	3.3 ± 0.3	0.8	2.7	4.1	0.8	4.5	
		$R_L = 500 \Omega$, $C_L = 50 pF$		1.2	4.0	6.4	1.2	7.0	
		$R_L = 1 M\Omega$, $C_L = 15 pF$	5.0 ± 0.5	0.5	2.2	3.3	0.5	3.6	
		$R_L = 500 \Omega, C_L = 50 pF$		0.8	3.4	5.6	0.8	6.2	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 5.5 \text{ V}, V_{I} = 0 \text{ V or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	V _{CC} = 5.5 V, V _I = 0 V or V _{CC}	8	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V _{CC} = 5.5 V, V _I = 0 V or V _{CC}	25	pF


^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

PROPAGATION DELAYS

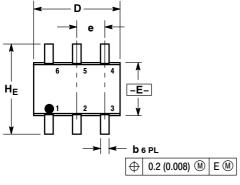
 $t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$

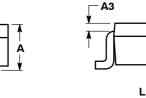
Figure 3. Switching Waveforms

 C_L = 50 pF or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

ORDERING INFORMATION

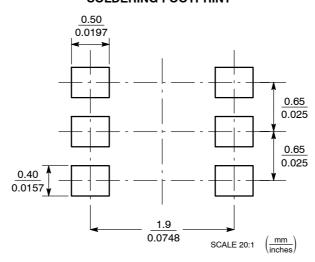

Device	Package	Shipping [†]
NL27WZU04DFT2G	SC-88 / SOT-363 / SC-70 (Pb-Free)	3000 / Tape & Reel
NLV27WZU04DFT2G*	SC-88 / SOT-363 / SC-70 (Pb-Free)	3000 / Tape & Reel
NL27WZU04DTT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

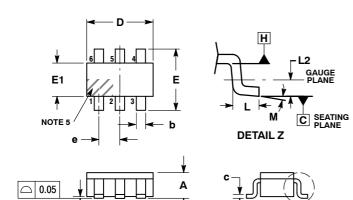
SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE W**



NOTES:

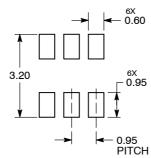
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.95	1.10	0.031	0.037	0.043
A1	0.00	0.05	0.10	0.000	0.002	0.004
А3		0.20 RE	F	0.008 REF		
b	0.10	0.21	0.30	0.004	0.008	0.012
C	0.10	0.14	0.25	0.004	0.005	0.010
D	1.80	2.00	2.20	0.070	0.078	0.086
Е	1.15	1.25	1.35	0.045	0.049	0.053
е	0.65 BSC			0	.026 BS	С
L	0.10	0.20	0.30	0.004	0.008	0.012
HF	2.00	2.10	2.20	0.078	0.082	0.086


SOLDERING FOOTPRINT*

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


TSOP-6 CASE 318G-02 **ISSUE U**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	0.90	1.00	1.10			
A1	0.01	0.06	0.10			
b	0.25	0.38	0.50			
С	0.10	0.18	0.26			
D	2.90	3.00	3.10			
E	2.50	2.75	3.00			
E1	1.30	1.50 1.7				
е	0.85	0.95	1.05			
L	0.20	20 0.40 0.60				
L2	0.25 BSC					
M	0°	_	10°			

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the inject to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

A1

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative