: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NLX2G66

Dual Bilateral Analog Switch / Digital Multiplexer

The NLX2G66 is a dual single pole, single throw (SPST) analog switch / digital multiplexer. This single supply voltage IC is designed with a sub-micron CMOS technology to provide low propagation delays (t_{pd}) and ON resistance (R_{ON}), while maintaining low power dissipation. This bi-lateral switch can be used with either analog or digital signals that may vary across the full power supply range from V_{CC} to GND.

Features

- Wide V_{CC} Operating Range: 1.65 V to 5.5 V
- OVT up to +5.5 V for Control Pin
- R_{ON} : Typically 5.5Ω at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA}$
- Rail-to-Rail Input/Output
- High On-Off Output Voltage Ratio
- High Degree of Linearity
- Ultra-Small Pb-Free, Halide-Free, RoHS-Compliant Packages
- ESD Performance: > 5000 V HBM, > 400 V MM

Typical Applications

- Cell Phones, PDAs, MP3 and other Portable Media Players

Figure 1. Analog Symbol

PIN ASSIGNMENTS

UDFN8	WLCSP8	Description
1	A1	1A
2	B1	1 B
3	C1	2 C
4	D1	GND
5	D2	2 A
6	C2	2 B
7	B2	1 C
8	A2	V_{CC}

This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.
ON

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

NLX2G66

Table 1. MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {S }}$	Switch Input / Output Voltage (Pins 1A, 1B, 2A and 2B)	-0.5 to $+\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{1}	Digital Control Input Voltage (Pins 1C and 2C)	-0.5 to +7.0	V
lok	I/O port diode current	± 50	mA
IIK	Control input diode current	-50	mA
$\mathrm{I}_{1 / \mathrm{O}}$	Continuous DC Current Through Analog Switch	± 100	mA
I_{L}	Latch-up Current, (Above $\mathrm{V}_{\text {CC }}$ and below GND at $125^{\circ} \mathrm{C}$)	± 100	mA
T_{s}	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage: Human Body Model (HBM) Machine Model (MM)	$\begin{aligned} & \geq 5000 \\ & >400 \end{aligned}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Positive DC Supply Voltage		1.65	5.5	V
$\mathrm{V}_{\text {S }}$	Switch Input / Output Voltage (Pins 1A, 2A, 1B and 2B)		GND	V_{CC}	V
V_{1}	Digital Control Input Voltage (Pins 1C and 2C)		GND	5.5	V
T_{A}	Operating Temperature Range		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}_{\text {f }}$	Input Transition Rise or Fall Time (ON/OFF Control Input)	$\mathrm{V}_{\mathrm{CC}}=<3.0 \mathrm{~V}$	0	20	ns / V
		$\mathrm{V}_{\text {CC }}=\geq 3.0 \mathrm{~V}$	0	10	

Table 3. ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit				Unit
				$25^{\circ} \mathrm{C}$		-55° to $125^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	
V_{IH}	High-Level Input Voltage, Control Input		$\begin{gathered} 1.65 \text { to } \\ 1.95 \end{gathered}$			$\begin{gathered} V_{C C} x \\ 0.65 \end{gathered}$		V
			$\begin{gathered} 2.3 \text { to } \\ 5.5 \end{gathered}$			$\mathrm{v}_{\mathrm{CC}} \mathrm{x}$		
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage, Control Input		$\begin{gathered} 1.65 \text { to } \\ 1.95 \end{gathered}$				$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \mathrm{x} \\ 0.35 \end{gathered}$	V
			$\begin{gathered} 2.3 \text { to } \\ 5.5 \end{gathered}$				$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \mathrm{x} \\ 0.30 \end{gathered}$	
1	Input Leakage Current, Control Input	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5		± 0.1		± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON }}$	ON-State Switch Leakage Current	$\begin{aligned} & V_{I S}=V_{C C} \text { or GND, } \\ & V_{I}=V_{I H}, V_{O S}=\text { Open } \end{aligned}$	5.5		± 0.1		± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-State Switch Leakage Current	$V_{\text {IS }}=V_{\text {CC }}$ and $V_{O S}=$ GND, or $V_{\text {IS }}=G N D$ and $\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \mathrm{GND}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$,	5.5		± 0.1		± 1	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	5.5		1.0		10	$\mu \mathrm{A}$
$\Delta_{\text {l }} \mathrm{CC}$	Supply Current Change	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6$	5.5				500	$\mu \mathrm{A}$
Cl_{1}	Control Input Capacitance		5				3.0	pF
$\mathrm{C}_{\text {I/O(Off) }}$	Switch OFF Input / Output Capacitance	See Figure 3	5				6.0	pF
$\mathrm{C}_{\text {//O(On) }}$	Switch ON Input / Output Capacitance	See Figure 4	5				13	pF

NLX2G66

Table 4. SWITCHING CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit-55° to $125^{\circ} \mathrm{C}$		Unit
				Min	Max	
$\mathrm{t}_{\text {PLH }}$, tPHL	Propagation Delay, A to B, B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1.8		6.5	ns
			2.5		3.3	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3		2.5	
			5.0		2.2	
$\begin{gathered} \mathrm{t}_{\mathrm{EN}} \\ \left(\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PZH}}\right) \end{gathered}$	Enable Time, C to Analog Output (A or B)	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ See Figure 6	1.8		10	ns
			2.5		6.5	
			3.3		5.5	
			5.0		4.9	
$\begin{gathered} \mathrm{t}_{\mathrm{DIS}} \\ \left(\mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\mathrm{PHZ}}\right) \end{gathered}$	Disable Time, C to Analog Output (A or B)	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ See Figure 6	1.8		9.0	ns
			2.5		7.2	
			3.3		6.5	
			5.0		6.0	

Table 5. ANALOG SWITCH CHARACTERISTICS

Symbol	Parameter	Conditions		V_{cc}	$25^{\circ} \mathrm{C}$	-55° to $125^{\circ} \mathrm{C}$		Unit	
				Typ	Min	Max			
R_{ON}	On-Resistance	$\begin{aligned} & V_{I S}=V_{C C} \text { or GND, } \\ & V_{I}=V_{I H}, \text { See Figure } 2 \end{aligned}$	$\mathrm{I}_{\mathrm{S}}=4 \mathrm{ma}$		1.65	12		30	Ω
			$\mathrm{I}_{\mathrm{S}}=8 \mathrm{ma}$	2.3	9		20		
			$\mathrm{I}_{\mathrm{S}}=24 \mathrm{ma}$	3.0	7.5		15		
			$\mathrm{I}_{\mathrm{S}}=32 \mathrm{ma}$	4.5	5.5		13		
$\mathrm{R}_{\text {ON(} \text { (peak) }}$	Peak On-Resistance	$\mathrm{V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}},$ See Figure 2	$\mathrm{I}_{\mathrm{S}}=4 \mathrm{ma}$	1.65	74.5		220	Ω	
			$\mathrm{I}_{\mathrm{S}}=8 \mathrm{ma}$	2.3	20		75		
			$\mathrm{I}_{\mathrm{S}}=24 \mathrm{ma}$	3.0	11.5		25		
			$\mathrm{I}_{\mathrm{S}}=32 \mathrm{ma}$	4.5	7.5		17		
$\Delta \mathrm{R}_{\mathrm{ON}}$	On-Resistance Mismatch between Switches	$\mathrm{V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}},$ See Figure 2	$\mathrm{I}_{\mathrm{S}}=4 \mathrm{ma}$	1.65			8.0	Ω	
			$\mathrm{I}_{\mathrm{S}}=8 \mathrm{ma}$	2.3			5.0		
			$\mathrm{I}_{\mathrm{S}}=24 \mathrm{ma}$	3.0			3.0		
			$\mathrm{I}_{\mathrm{S}}=32 \mathrm{ma}$	4.5			2.0		
BW	Bandwidth (${ }_{-}$-3dB)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}_{\mathrm{IN}}=\text { Sine Wave } \\ & \text { See Figure } 8 \end{aligned}$		1.65			> 270	MHz	
				2.3			> 270		
				3.0			> 270		
				4.5			> 270		

Table 5. ANALOG SWITCH CHARACTERISTICS (continued)

Symbol	Parameter	Conditions	V_{cc}	$25^{\circ} \mathrm{C}$	Unit
				Typ	
$\mathrm{ISO}_{\text {Off }}$	Off-Channel Feedthrough Isolation	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ $\mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz}$ Sine Wave See Figure 9	1.65	-70	dB
			2.3	-70	
			3.0	-70	
			4.5	-70	
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \text { Sine Wave } \\ & \text { See Figure } 9 \end{aligned}$	1.65	-60	
			2.3	-60	
			3.0	-60	
			4.5	-60	
XTalk	Crosstalk Between Switches	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \text { Sine Wave } \\ & \text { See Figure } 10 \end{aligned}$	1.65	-100	dB
			2.3	-100	
			3.0	-100	
			4.5	-100	
		$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \text { Sine Wave } \\ & \text { See Figure } 10 \end{aligned}$	1.65	-90	
			2.3	-90	
			3.0	-90	
			4.5	-90	
	Feedthrough Noise, Control to Switch	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \text { Square Wave, } \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}, \\ & \text { See Figure } 11 \end{aligned}$	1.65	10	$\mathrm{mV}_{\mathrm{pp}}$
			2.3	10	
			3.0	10	
			4.5	15	
THD	Total Harmonic Distortion	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}_{\mathrm{IN}}=600 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \text { Sine Wave, } \\ & \text { See Figure } 12 \end{aligned}$	2.3	0.025	\%
			3.0	0.015	
			4.5	0.01	

Table 6. POWER DISSIPATION CHARACTERISTICS

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$25^{\circ} \mathrm{C}$	Unit
				Typ	
CPD	Power Dissipation Capacitance	$\mathrm{f}=10 \mathrm{MHz}$	1.65	8.0	pF
			2.3	8.9	
			3.0	9.6	
			4.5	10.9	

NLX2G66

Table 7. DEVICE ORDERING INFORMATION

Device Order Number	Package	Shipping †
NLX2G66DMUTAG	UDFN8-0.5P, $1.95 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ (Pb-Free)	$3000 /$ Tape \& Reel
NLX2G66DMUTCG	UDFN8-0.5P, $1.95 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ (Pb-Free)	$3000 /$ Tape \& Reel
NLX2G66MU3TCG (In Development)	UDFN8-0.35P, $1.45 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ (Pb-Free)	$3000 /$ Tape \& Reel
NLX2G66FCTAG	WLCSP8, $1.888 \mathrm{~mm} \times 0.888 \mathrm{~mm}$ $($ Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 2. On Resistance Test Set-Up

Figure 4. Maximum On-Channel Leakage Current Test Set-Up

Switch to Position 2 when testing $t_{\text {PLZ }}$ and $t_{P Z L}$ Switch to Position 1 when testing $t_{P H Z}$ and $t_{P Z H}$

Figure 6. Propagation Delay Output Enable/Disable Test Set-Up

Figure 3. Maximum Off-Channel Leakage Current Test Set-Up

Figure 5. Propagation Delay Test Set-Up

Figure 7. Power Dissipation Capacitance Test Set-Up

NLX2G66

Figure 8. Maximum On-Channel Bandwidth Test Set-Up

Figure 9. Off-Channel Feedthrough Isolation Test Set-Up

Figure 10. Crosstalk (between Switches)

Figure 11. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set-Up

NLX2G66

Figure 12. Total Harmonic Distortion Test Set-Up

Figure 13. Propagation Delay, Analog In to Analog Out Waveforms

Figure 14. Propagation Delay, ON/OFF Control

NLX2G66

PACKAGE DIMENSIONS

UDFN8 1.45x1.0, 0.35P
CASE 517BZ
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.55
A1	0.00	0.05
A3	0.13	
REF		
b	0.15	
D	0.45	
BSC		
E	1.00	
BSC		
e	0.35	
BSC	0.25	0.35
L1	0.30	0.40

RECOMMENDED SOLDERING FOOTPRINT*
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLX2G66

PACKAGE DIMENSIONS

UDFN8 1.95x1.0, 0.5P

CASE 517CA
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN TERM NAL 20 MM FROM TERMINAL TIP 0.15 AND 0.20 MM FROM TERMINAL TIP. . PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

DIM	MILLIMETERS			
	MIN	MAX		
A	0.45	0.55		
A1	0.00	0.05		
A3	0.13			
REF				
b	0.15			
D	0.25			
E	1.00			
BSC				
e	0.50			BSC
L	0.25	0.35		
L1	0.30	0.40		

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLX2G66

PACKAGE DIMENSIONS

WLCSP8, 1.888x0.888
CASE 567MR
ISSUE O

TOP VIEW

NOTES:

1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO SPHERICAL
CROWNS OF SOLDER BALLS.

	MILLIMETERS	
DIM	MIN	MAX
A	---	0.50
$\mathbf{A 1}$	0.15	0.19
\mathbf{b}	0.21	0.25
\mathbf{D}	1.858	1.918
\mathbf{E}	0.858	0.918
\mathbf{e}	0.50	BSC

SOLDERING FOOTPRINT*

 details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and the 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

