

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V, 8-Channel, 2:1 Gigabit Ethernet LAN Switch with LED Switch

The NS3L500 is a 8-channel 2:1 LAN switch with 3 additional built-in SPDT switches for LED routing. This switch is ideal for Gigabit LAN applications due to its low ON-state resistance and capacitance giving the switch a typical bandwidth of 800 MHz. The switch also has excellent ON-state resistance match, low bit-to-bit skew, and low crosstalk among channels. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs.

This part can be used to replace mechanical relays in low-voltage LAN applications that interface a physical layer over CAT 5 or CAT 6 unshielded twisted pair cable through an isolation transformer. The NS3L500 is available in a 56-pin WQFN package and operates over the extended -40° C to $+85^{\circ}$ C temperature range.

Features

- V_{CC} Operating Range: +3.0 V to +3.6 V
- Low ON-State Resistance ($R_{ON} = 4 \Omega$ Typical)
- Low ON-State Capacitance (C_{ON} = 7 pF Typical)
- Flat ON-State Resistance ($R_{ON}(flat) = 0.5 \Omega$ Typical)
- Wide Bandwidth (800 MHz Typical)
- Low Crosstalk ($X_{TALK} = -37 \text{ dB Typical}$)
- Near-Zero Propagation Delay: 250 ps
- Low Bit-to-Bit Skew (tsk(o) = 100 ps Max)
- Three SPDT Channels for LED Signal Switching
- Packaging: 56-Pin WQFN
- Pin-to-Pin Compatible with PI3L500-A, TS3L500AE and MAX4927
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

1

Typical Applications

- 10/100/1000 Base-T Ethernet Signal Switching
- Notebooks and Docking Stations
- Hub and Router Signal Switching
- Differential (LVDS, LVPECL) Signal Switching

ON Semiconductor®

http://onsemi.com

WQFN56 MT SUFFIX CASE 510AK DIAGRAMS

NS3L50

AWLYYW

MARKING

= Assembly Location

WL = Wafer Lot
YY = Year
WW = Work Week
= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

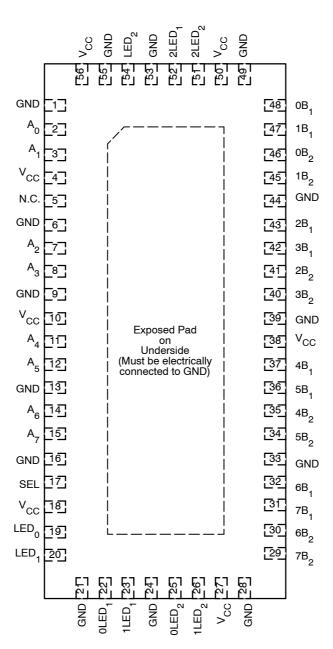


Figure 1. Pinout (Top View)

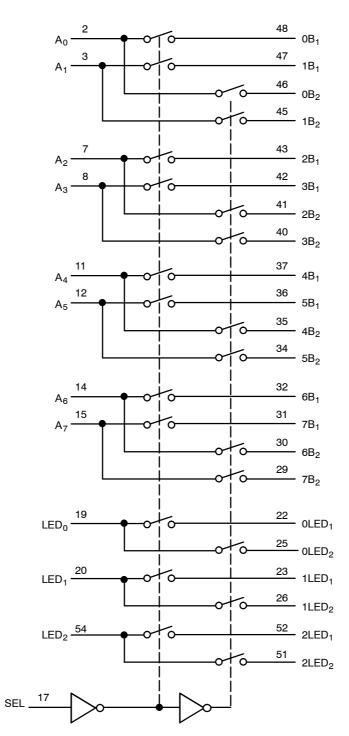


Figure 2. Block Diagram

PIN DESCRIPTION

Pin Name	Description	
A _X	Data I/Os	
хВ _у	Data I/Os	
SEL	Select Input	
LED _x	LED I/O Port	
xLED _y	LED I/O Port	

TRUTH TABLE

SEL	Function
L	A_x to xB_1 : LED_x to $xLED_1$
Н	A _x to xB ₂ : LED _x to xLED ₂

MAXIMUM RATINGS

Symbol	Pins	Parameter	Value	Unit
V _{CC}	V _{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
V _{IN}	SEL	Control Input Voltage	-0.5 to +5.5	V
V _{I/O}	A _X , xB _Y , LED _X , xLED _Y	Switch I/O Voltage Range	-0.5 to V _{CC} +0.5	V
I _{CC}	V _{CC}	DC Output Current	±120	mA
I _{IK}	SEL	Control Input Clamp Current	-50	mA
I _{I/O}	A _X , xB _Y , LED _X , xLED _Y	ON-State Switch Current	±120	mA
$R_{\theta JA}$		Thermal Resistance, Junction-to-Air	125	°C/W
T _S		Storage Temperature	−65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Value	Unit
V _{CC}	V _{CC}	Positive DC Supply Voltage	+3.0 to +3.6	V
V _{IN}	SEL	Control Input Voltage	0 to +5.5	
V _{I/O}	A_X , xB_Y , LED_X , $xLED_Y$	Switch I/O Voltage Range	0 to V _{CC}	V
T _A		Operating Temperature	-40 to +85	°C

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

DC ELECTRICAL CHARACTERISTICS (Typical: T = 25°C, V_{CC} = 3.3 V)

				-40	°C to +8	35°C	
Symbol	Pins	Parameters	Conditions	Min	Тур	Max	Unit
1000 BASE	-T ETHERNET	SWITCHING					
V _{IH}	SEL	Control Input HIGH Voltage		2		5.5	V
V_{IL}	SEL	Control Input LOW Voltage		-0.5		0.8	٧
V _{IK}	SEL	Clamp Diode Voltage	V _{CC} = Max, I _{IN} = -18 mA		-0.7	-1.2	V
I _{IH}	SEL	Input HIGH Current	V _{CC} = Max, V _{IN} = V _{CC}	-1		+1	μΑ
I _{IL}	SEL	Input LOW Current	V _{CC} = Max, V _{IN} = GND	-1		+1	μΑ
I _{OFF}	SEL	Off-Leakage Current	V _{CC} = 0 V, V _{IN} = 0 V to 3.6 V			±1.5	μΑ
I _{CC}	V _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V,, V_{IN} = V_{CC} or GND, I_{O} = 0 mA		250	600	μΑ
I _{LA(OFF)}	A_X , xB_Y	Off-Leakage Current	V_{CC} = 3.6 V, VA_X = 0.3 V, 3.3 V; VxB_1 or VxB_2 = 3.3 V, 0.3 V	-1		+1	μΑ
I _{LA_(ON)}	A_X , xB_Y	On-Leakage Current	$V_{CC} = 3.6 \text{ V}, VA_X = 0.3 \text{ V}, 3.3 \text{ V}; VxB_1 $ or $VxB_2 = 0.3 \text{ V}, 3.3 \text{ V}, \text{ or floating}$	-1		+1	μΑ
R _{ON}	A_X , xB_Y	On-Resistance	V_{CC} = 3 V, 1.5 V \leq V _{IN} \leq V _{CC} , I_{O} = -40 mA		4	7	Ω
R _{ON(FLAT)}	A_X , xB_Y	On-Resistance Flatness	V_{CC} = 3 V, V_{IN} = 1.5 V and $V_{CC},$ I_{O} = –40 mA		0.5		Ω
ΔR_{ON}	A_X , xB_Y	On-Resistance Match Between Switch Pairs	V_{CC} = 3 V, 1.5 V \leq V $_{IN}$ \leq V $_{CC}$, I_{O} = -40 mA		0.4	1	Ω
10/100 BAS	E-T ETHERNE	T SWITCHING					
V_{IH}	SEL	Control Input HIGH Voltage		2		5.5	٧
V_{IL}	SEL	Control Input LOW Voltage		-0.5		0.8	V
V _{IK}	SEL	Clamp Diode Voltage	V _{CC} = Max, I _{IN} = -18 mA		-0.7	-1.2	V
I _{IH}	SEL	Input HIGH Current	V _{CC} = Max, V _{IN} = V _{CC}	-1		+1	μА
I _{IL}	SEL	Input LOW Current	V _{CC} = Max, V _{IN} = GND	-1		+1	μΑ
I _{OFF}	SEL	Off-Leakage Current	V _{CC} = 0 V, V _{IN} = 0 V to 3.6 V			±1.5	μΑ
I _{CC}	V _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = V_{CC} or GND I_{O} = 0 mA		250	600	μΑ
I _{LA(OFF)}	A_X , xB_Y	Off-Leakage Current	$V_{CC} = 3.6 \text{ V}, VA_X = 0.3 \text{ V}, 3.3 \text{ V}; VxB_1 $ or $VxB_2 = 3.3 \text{ V}, 0.3 \text{ V}$	-1		+1	μΑ
I _{LA_(ON)}	A_X , xB_Y	On-Leakage Current	$V_{CC} = 3.6 \text{ V}, VA_X = 0.3 \text{ V}, 3.3 \text{ V}; VxB_1 $ or $VxB_2 = 0.3 \text{ V}, 3.3 \text{ V}, \text{ or floating}$	-1		+1	μΑ
R _{ON}	A_X , xB_Y	On-Resistance	$V_{CC} = 3 \text{ V}, 1.25 \text{ V} \le V_{IN} \le V_{CC}, \\ I_{O} = -10 \text{ mA to } -30 \text{ mA}$		4	6	Ω
R _{ON(FLAT)}	A _X , xB _Y	On-Resistance Flatness	V_{CC} = 3 V, V_{IN} = 1.25 V and V_{CC} , I_{O} = -10 mA to -30 mA		0.5		Ω
ΔR_{ON}	A _X , xB _Y	On-Resistance Match Between Switch Pairs	$V_{CC} = 3 \text{ V}, 1.25 \text{ V} \le V_{IN} \le V_{CC},$ $I_{O} = -10 \text{ mA to } -30 \text{ mA}$		0.4	1	Ω

DC ELECTRICAL CHARACTERISTICS (Typical: T = 25° C, $V_{CC} = 3.3 \text{ V}$)

				-40	°C to +8	5°C	
Symbol	Pins	Parameters	Conditions	Min	Тур	Max	Unit
LED SWITCHING							
R _{ON}	LED _X , xLED _Y	On-Resistance	$ \begin{array}{l} V_{CC} = 3 \text{ V, } 1.25 \text{ V} \leq V_{IN} \leq V_{CC}, \\ I_{O} = -40 \text{ mA} \end{array} $		15	25	Ω
R _{ON(FLAT)}	LED _X , xLED _Y	On-Resistance Flatness	V_{CC} = 3 V, V_{IN} = 1.25 V and $V_{CC},$ I_{O} = –40 mA		8		Ω
ΔR _{ON}	LED _X , xLED _Y	On-Resistance Match Between Switch Pairs	V_{CC} = 3 V, 1.25 V \leq V $_{IN}$ \leq V $_{CC}$, I_{O} = -40 mA		1	2	Ω

AC ELECTRICAL CHARACTERISTICS (Typicals: T = 25°C, V_{CC} = 3.3 V)*

			-40°C to +85°C			
Pins	Parameters	Conditions	Min	Тур	Max	Unit
G CHARACTERI	STICS					
A _x , xB _y	Propagation Delay	V _{CC} = 3.0 V to 3.6 V (Figure 3)		0.25		ns
SEL, xLED _y	Line Enable Time – SEL to xLED _Y	Output: Closed to Open V _{CC} = 3.0 V to 3.6 V (Figure 4)	0.5		15	ns
SEL, xB _y	Lines Enable Time – SEL to xB _y		0.5		3	μS
SEL, xLED _y	Line Enable Time – SEL to xLED _Y	Output: Open to Closed V _{CC} = 3.0 V to 3.6 V (Figure 4)	0.5		9	ns
SEL, xB _y	Lines Enable Time – SEL to xB _y		0.5		35	ns
A _x , xB _y	Output Skew between center port to any other port	V _{CC} = 3.0 V to 3.6 V (Calculated, Figure 3)		50	100	ps
A _x , xB _y	Skew between opposite transition of the same output (t _{PHL} – t _{PLH})	V _{CC} = 3.0 V to 3.6 V (Calculated, Figure 3)		50	100	ps
ELECTRICAL CH	HARACTERISTICS					
xB _{y,} xLED _y	-3 dB Bandwidth	$R_L = 100 \Omega$ (Figure 5)		800		MHz
A_X , LED $_X$	Off – Isolation	R_L = 100 Ω , f = 250 MHz (Figure 6)		-37		dB
$\begin{array}{c} A_X \ to \ x B_Y \\ A_{(X+2)} \ to \\ (X+2) B_Y \end{array}$	Crosstalk	R_L = 100 Ω, f = 250 MHz (Figure 7)		-37		dB
NCE						
SEL	Control Pin Input Capacitance	V _{IN} = 0 V, f = 1 MHz		2	3	pF
A _X , xB _y	ON Capacitance	V _{IN} = 0 V, f = 1 MHz, Outputs Open, Switch ON		7	10	pF
хВу	B Port Switch Capacitance	V _{IN} = 0 V, f = 1 MHz, Outputs Open, Switch OFF		5	6	pF
	SEL, xBy SEL, xBy SEL, xLEDy SEL, xBy SEL, xBy A _X , xBy A _X , xBy A _X , xBy ELECTRICAL CH xB _Y , xLED _Y A _X , ted _Y A _X , ted _Y A _X , xBy CE SEL A _X , xBy	A _x , xB _y SEL, xLED _y Line Enable Time – SEL to xLED _y SEL, xBy Lines Enable Time – SEL to xB _y SEL, xLED _y Line Enable Time – SEL to xB _y SEL, xLED _y Line Enable Time – SEL to xB _y SEL, xBy Lines Enable Time – SEL to xB _y A _x , xB _y Output Skew between center port to any other port A _x , xB _y Skew between opposite transition of the same output (t _{PHL} – t _{PLH}) ELECTRICAL CHARACTERISTICS XB _y , xLED _y A _x , to xB _y A _(X+2) to (X+2)B _y NCE SEL Control Pin Input Capacitance A _x , xB _y B Port Switch	G CHARACTERISTICS A_x , xB_y Propagation Delay $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Figure 3)}$ SEL, $xLED_y$ Line Enable Time – SEL to $xLED_y$ Output: Closed to Open $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Figure 4)}$ SEL, xB_y Lines Enable Time – SEL to $xLED_y$ Output: Open to Closed $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Figure 4)}$ SEL, $xLED_y$ Lines Enable Time – SEL to $xLED_y$ Output: Open to Closed $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Figure 4)}$ SEL, xB_y Lines Enable Time – SEL to xB_y $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Calculated, Figure 3)}$ A _x , xB_y Skew between opposite transition of the same output $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Calculated, Figure 3)}$ ELECTRICAL CHARACTERISTICS $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Calculated, Figure 3)}$ XB _y , $xLED_y$ -3 dB Bandwidth R _L = 100 Ω (Figure 5) A _X , LED_x Off – Isolation R _L = 100 Ω , f = 250 MHz (Figure 6) A _X to xB_y Crosstalk R _L = 100 Ω , f = 250 MHz (Figure 7) NCE SEL Control Pin Input Capacitance V _{IN} = 0 V, f = 1 MHz, Outputs Open, Switch ON NBy B Port Switch V _{IN} = 0 V, f = 1 MHz, Outputs Open, Switch ON	Pins Parameters Conditions G CHARACTERISTICS A_x , xB_y Propagation Delay $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Figure 3)}$ SEL, xLEDy Line Enable Time – SEL to $xLED_y$ Output: Closed to Open $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Figure 4)}$ 0.5 SEL, xBy Lines Enable Time – SEL to xB_y Output: Open to Closed $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Figure 4)}$ 0.5 SEL, xBy Lines Enable Time – SEL to $xLED_y$ Output: Open to Closed $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (Figure 4)}$ 0.5 SEL, xBy Lines Enable Time – SEL to $xLED_y$ V(Figure 4) 0.5 SEL, xBy Lines Enable Time – SEL to $xLED_y$ 0.5 0.5 SEL, xBy Lines Enable Time – SEL to $xLED_y$ 0.5 0.5 SEL, xBy Lines Enable Time – SEL to $xLED_y$ 0.5 0.5 A _x , xBy Output Skew between cyto posite transition of the same output out (the same output (the	$ \begin{array}{ c c c c c c } \hline \textbf{Pins} & \textbf{Parameters} & \textbf{Conditions} & \textbf{Min} & \textbf{Typ} \\ \hline \textbf{3 CHARACTERISTICS} \\ \hline \textbf{A}_x \times \textbf{B}_y & \textbf{Propagation Delay} & \textbf{V}_{CC} = 3.0 \ V to 3.6 \ V \ (Figure 3) & 0.25 \\ \hline \textbf{SEL}, \textbf{xLED}_y & \textbf{Line Enable Time - SEL} & \textbf{Output: Closed to Open V}_{CC} = 3.0 \ V to 3.6 \ V \ (Figure 4) & 0.5 \\ \hline \textbf{SEL}, \textbf{xB}_y & \textbf{Lines Enable Time - SEL} & \textbf{Output: Open to Closed V}_{CC} = 3.0 \ V to 3.6 \ V \ (Figure 4) & 0.5 \\ \hline \textbf{SEL}, \textbf{xB}_y & \textbf{Lines Enable Time - SEL} & \textbf{Output: Open to Closed V}_{CC} = 3.0 \ V to 3.6 \ V \ (Figure 4) & 0.5 \\ \hline \textbf{SEL}, \textbf{xB}_y & \textbf{Lines Enable Time - SEL} & \textbf{Output: Open to Closed V}_{CC} = 3.0 \ V to 3.6 \ V \ (Calculated, Figure 3) & 0.5 \\ \hline \textbf{A}_x \times \textbf{A}_y & \textbf{Output Skew between center port to any other port to any other port to any other transition of the same output (fight_L - fp_Lh) & Figure 3) & 50 \\ \hline \textbf{SELCTRICAL CHARACTERISTICS} & \textbf{XB}_y, \textbf{XLED}_y & -3 \ dB \ Bandwidth & \textbf{R}_L = 100 \ \Omega \ (Figure 5) & 800 \\ \hline \textbf{A}_x, \textbf{LED}_x & \textbf{Off - Isolation} & \textbf{R}_L = 100 \ \Omega, f = 250 \ MHz \ (Figure 6) & -37 \\ \hline \textbf{A}_x \ to \textbf{XB}_y & \textbf{Crosstalk} & \textbf{R}_L = 100 \ \Omega, f = 250 \ MHz \ (Figure 7) & -37 \\ \hline \textbf{A}_x \ to \textbf{XB}_y & \textbf{Crosstalk} & \textbf{R}_L = 100 \ \Omega, f = 250 \ MHz \ (Figure 7) & -37 \\ \hline \textbf{NCE} & \textbf{SEL} & \textbf{Control Pin Input} & \textbf{Capacitance} & \textbf{V}_{IN} = 0 \ \textbf{V}, f = 1 \ MHz, \textbf{Outputs Open}, & 7 \\ \hline \textbf{XBy} & \textbf{B Port Switch} & \textbf{V}_{IN} = 0 \ \textbf{V}, f = 1 \ MHz, \textbf{Outputs Open}, & 5 \\ \hline \end{tabular} $	Pins Parameters Conditions Min Typ Max 3 CHARACTERISTICS A _X , xB _y Propagation Delay V _{CC} = 3.0 V to 3.6 V (Figure 3) 0.25 SEL, xLED _y Line Enable Time – SEL to xLED _Y Output: Closed to Open V _{CC} = 3.0 V to 3.6 V (Figure 4) 0.5 15 SEL, xBy Lines Enable Time – SEL to xB _y Output: Open to Closed V _{CC} = 3.0 V to 3.6 V (Figure 4) 0.5 9 SEL, xBy Lines Enable Time – SEL to xB _y 0.5 35 A _X , xBy Output Skew between center port to any other port V _{CC} = 3.0 V to 3.6 V (Calculated, Figure 3) 50 100 A _X , xBy Skew between opposite transition of the same output (t _{PHL} – t _{PLH}) V _{CC} = 3.0 V to 3.6 V (Calculated, Figure 3) 50 100 ELECTRICAL CHARACTERISTICS xB _y , xLED _y -3 dB Bandwidth R _L = 100 Ω (Figure 5) 800 -37 A _X to xB _y A _{X,z,2} to (X+2)B _y Crosstalk R _L = 100 Ω, f = 250 MHz (Figure 7) -37 -37 NCE SEL Control Pin Input Capacitance V _{IN} = 0 V, f = 1 MHz, Outputs Open, Switch ON 7 10 NBy B Port Switch

^{*}Guaranteed by design and/or characterization.

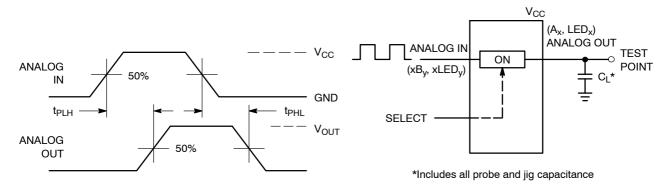


Figure 3. Propagation Delay

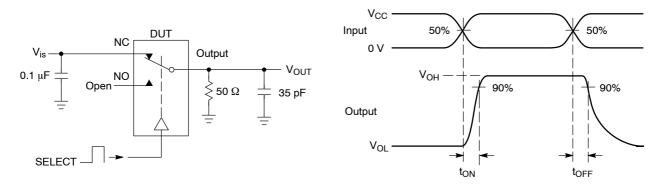


Figure 4. t_{ON}/t_{OFF}

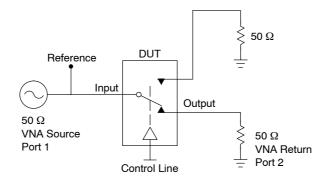


Figure 5. Bandwidth

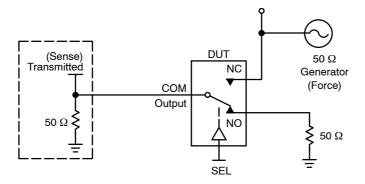
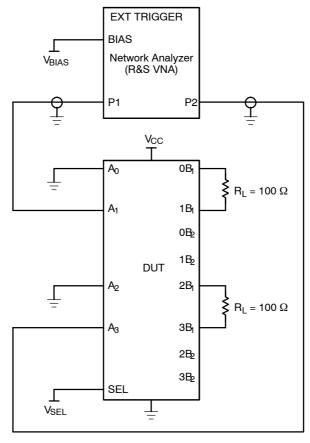



Figure 6. Off-Isolation

- 1. C_L includes probe and jig capacitance. 2. A 50 Ω termination resistor is needed to match the loading of the network analyzer.

Figure 7. Test Circuit for Crosstalk (X_{TALK})

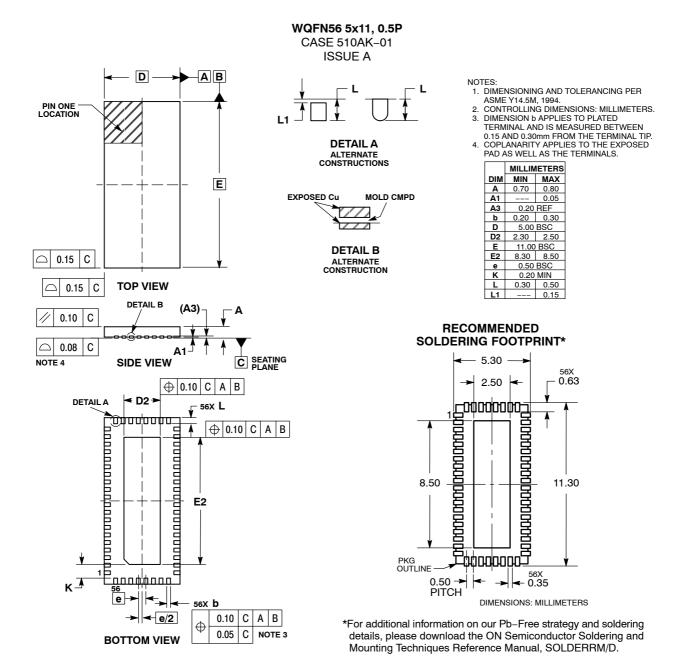
Crosstalk is measured at the output of the nonadjacent ON channel. For example, when V_{SEL} = 0 and A_0 is the input, the output is measured at 1B₁. All unused analog input (A) ports are connected to GND, and output (B) ports are connected to GND through 50 Ω pulldown resistors.

APPLICATION INFORMATION

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, the output enables or select pins may be driven low to 0 V and high to 3.6 V> Driving IN Rail-to-Rail® minimizes power consumption.

Power-Supply Sequencing


Proper power–supply sequencing is advised for all CMOS devices. It is recommended to always apply $V_{\rm CC}$ before applying signals to the input/output or control pins.

ORDERING INFORMATION

Device	Package	Shipping [†]
NS3L500MTTWG	WQFN56 (Pb-free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative