imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual PNP Bias Resistor Transistors R1 = 22 k\Omega, R2 = 47 k Ω

PNP Transistors with Monolithic Bias Resistor Network

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

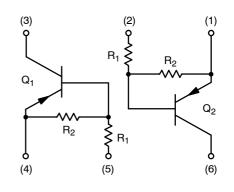
(T_A = 25° C, common for Q1 and Q2, unless otherwise noted)

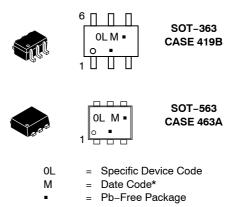
Rating	Symbol	Max	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current – Continuous	۱ _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	40	Vdc
Input Reverse Voltage	V _{IN(rev)}	7	Vdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ORDERING INFORMATION

Device	Package	Shipping [†]	
MUN5134DW1T1G	SOT-363	3,000 / Tape & Reel	
NSBA124XDXV6T1G	SOT-563	4,000 / Tape & Reel	


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ON Semiconductor®

http://onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit						
MUN5134DW1 (SOT-363) One Junction Heated									
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	PD	187 256 1.5 2.0	mW mW/°C					
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{\theta JA}$	670 490	°C/W					
MUN5134DW1 (SOT-363) Both Junction Heated (Note 3)			-						
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	PD	250 385 2.0 3.0	mW mW/°C					
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	493 325	°C/W					
Thermal Resistance, Junction to Lead	(Note 1) (Note 2)	$R_{ hetaJL}$	188 208	°C/W					
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C					
NSBA124XDXV6 (SOT-563) One Junction Heated									
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 1)	P _D	357 2.9	mW mW/°C					
Thermal Resistance, Junction to Ambient	(Note 1)	R_{\thetaJA}	350	°C/W					
NSBA124XDXV6 (SOT-563) Both Junction Heated (Note 3)			-						
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 1)	P _D	500 4.0	mW mW/°C					
Thermal Resistance, Junction to Ambient	(Note 1)	R_{\thetaJA}	250	°C/W					
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C					

FR-4 @ Minimum Pad.
FR-4 @ 1.0 x 1.0 Inch Pad.
Both junction heated values assume total power is sum of two equally powered channels.

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	I _{CBO}	-	_	100	nAdc
Collector–Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	-	_	500	nAdc
Emitter-Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_C = 0)$	I _{EBO}	_	_	0.13	mAdc
Collector-Base Breakdown Voltage $(I_C = 10 \ \mu A, I_E = 0)$	V _(BR) CBO	50	_	_	Vdc
Collector–Emitter Breakdown Voltage (Note 4) $(I_{\rm C} = 2.0 \text{ mA}, I_{\rm B} = 0)$	V _(BR) CEO	50	_	-	Vdc
ON CHARACTERISTICS			-		
DC Current Gain (Note 4) (I _C = 5.0 mA, V _{CE} = 10 V)	h _{FE}	80	130	-	
Collector–Emitter Saturation Voltage (Note 4) $(I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA})$	V _{CE(sat)}	_	_	0.25	Vdc
Input Voltage (off) (V _{CE} = 5.0 V, I _C = 100 μA)	V _{i(off)}	-	0.9	-	Vdc
Input Voltage (on) $(V_{CE} = 0.2 \text{ V}, I_C = 3.0 \text{ mA})$	V _{i(on)}	-	1.3	-	Vdc
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω)	V _{OL}	-	_	0.2	Vdc
Output Voltage (off) ($V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 0.5 \text{ V}, \text{ R}_{L} = 1.0 \text{ k}\Omega$)	V _{OH}	4.9	-	-	Vdc
Input Resistor	R1	15.4	22	28.6	kΩ
Resistor Ratio	R ₁ /R ₂	0.38	0.47	0.56	

4. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle \leq 2%.

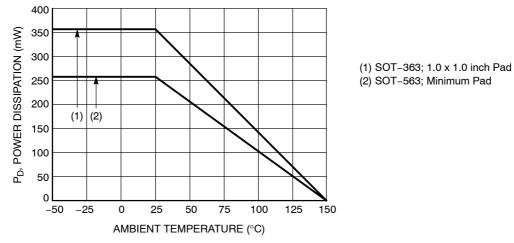
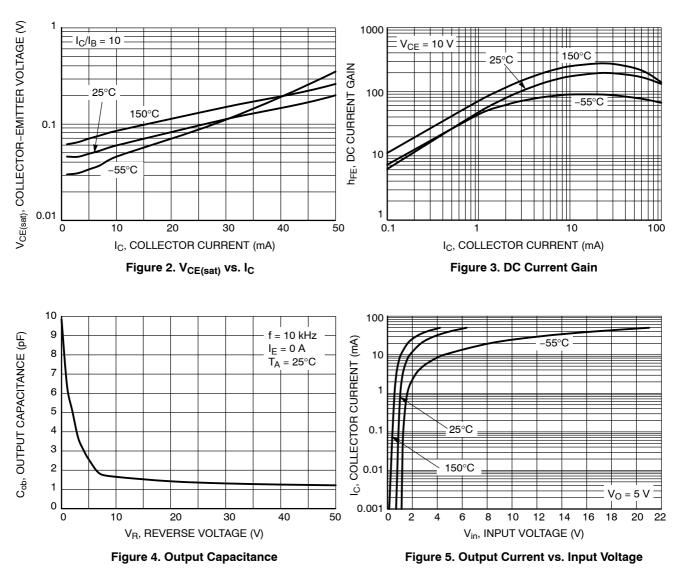



Figure 1. Derating Curve

TYPICAL CHARACTERISTICS MUN5134DW1, NSBA124XDXV6

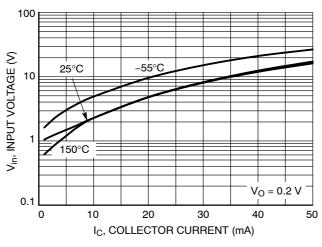
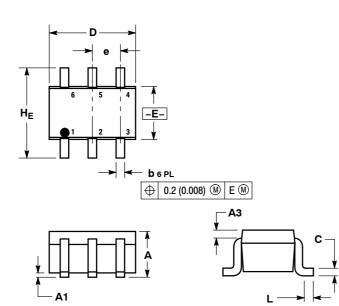
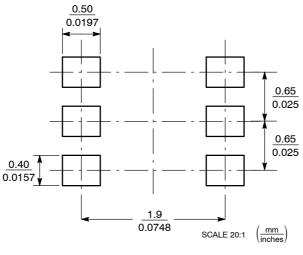
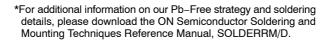



Figure 6. Input Voltage vs. Output Current

PACKAGE DIMENSIONS

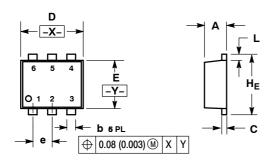

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE W**


NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A3	0.20 REF			0.008 REF			
b	0.10	0.21	0.30	0.004	0.008	0.012	
С	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
E	1.15	1.25	1.35	0.045	0.049	0.053	
е	0.65 BSC			0	026 BS	С	
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	2.00	2.10	2.20	0.078	0.082	0.086	

SOLDERING FOOTPRINT*

SC-88/SC70-6/SOT-363


PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A ISSUE F

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
Е	1.10	1.20	1.30	0.043	0.047	0.051
е	0.5 BSC			0.02 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1.60	1.70	0.059	0.062	0.066

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for researin any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

DTA124XD/D