

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Purpose Transistors

PNP Silicon

Features

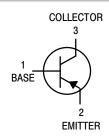
• These are Pb-Free Devices

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V_{CEO}	-40	Vdc
Collector - Base Voltage	V_{CBO}	-40	Vdc
Emitter – Base Voltage	V_{EBO}	-5.0	Vdc
Collector Current – Continuous	I _C	-200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) @ T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) @ T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor®

http://onsemi.com

SOT-23 CASE 318 STYLE 6

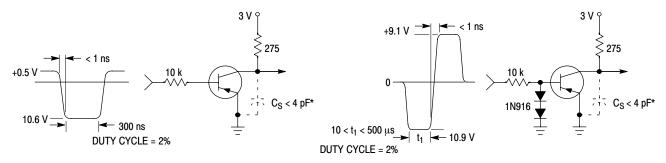
MARKING DIAGRAM

396 = Specific Device Code

M = Date Code*■ = Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

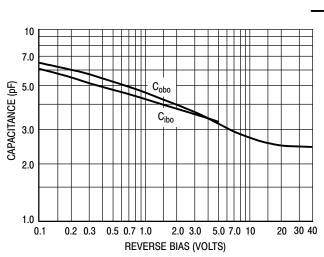

Device	Package	Shipping [†]
NSCT3906LT1G	SOT-23 (Pb-Free)	3,000 Tape & Reel
NSCT3906LT3G	SOT-23 (Pb-Free)	10,000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\textbf{ELECTRICAL CHARACTERISTICS} \; (T_A = 25^{\circ}C \; unless \; otherwise \; noted)$

Charac	teristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS		•		•		
Collector – Emitter Breakdown Voltage $(I_C = -1.0 \text{ mAdc}, I_B = 0)$		V _{(BR)CEO}	-40	_	Vdc	
Collector – Base Breakdown Voltage ($I_C = -10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	-40	-	Vdc		
Emitter – Base Breakdown Voltage $(I_E = -10 \mu Adc, I_C = 0)$	V _{(BR)EBO}	-5.0	-	Vdc		
Base Cutoff Current ($V_{CE} = -30 \text{ Vdc}$, $V_{EB} = -3.0 \text{ Vdc}$)	I _{BL}	-	-50	nAdc		
Collector Cutoff Current (V _{CE} = -30 Vdc, V _{EB} = -3.0 Vdc)	I _{CEX}	-	-50	nAdc		
ON CHARACTERISTICS (Note 3)						
DC Current Gain		H _{FE}	60 80 100 60 30	- 300 - -	_	
	V _{CE(sat)}	_ _	-0.25 -0.4	Vdc		
$\label{eq:Base-Emitter Saturation Voltage} $	V _{BE(sat)}	-0.65 -	-0.85 -0.95	Vdc		
SMALL-SIGNAL CHARACTERISTICS		•				
Current – Gain – Bandwidth Product $(I_C = -10 \text{ mAdc}, V_{CE} = -20 \text{ Vdc}, t)$	= 100 MHz)	f _T	250	-	MHz	
Output Capacitance (V _{CB} = -5.0 Vdc, I _E = 0, f = 1.0 M	Hz)	C _{obo}	-	4.5	pF	
Input Capacitance (V _{EB} = -0.5 Vdc, I _C = 0, f = 1.0 MHz)			-	10	pF	
Input Impedance ($I_C = -1.0 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)			2.0	12	kΩ	
Voltage Feedback Ratio ($I_C = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc},$	h _{re}	0.1	10	X 10 ⁻⁴		
Small – Signal Current Gain ($I_C = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc},$	h _{fe}	100	400	-		
Output Admittance ($I_C = -1.0 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$,	h _{oe}	3.0	60	μmhos		
Noise Figure (I _C = $-100 \mu Adc$, V _{CE} = $-5.0 Vdc$,	NF	-	4.0	dB		
SWITCHING CHARACTERISTICS						
Delay Time	$(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc},$ t_d		_	35	no	
Rise Time	$I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	t _r	-	35	ns	
Storage Time	$(V_{CC} = -3.0 \text{ Vdc}, I_{C} = -10 \text{ mAdc},$	t _s	_	225	ns	
Fall Time	$I_{B1} = I_{B2} = -1.0 \text{ mAdc}$	t _f	-	75	113	

^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.


* Total shunt capacitance of test jig and connectors

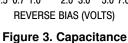

Figure 1. Delay and Rise Time **Equivalent Test Circuit**

Figure 2. Storage and Fall Time **Equivalent Test Circuit**

TYPICAL TRANSIENT CHARACTERISTICS

- T_J = 25°C

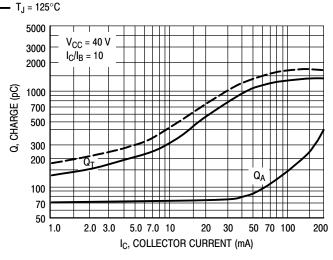


Figure 4. Charge Data

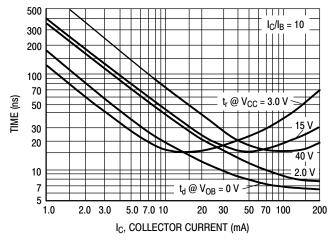


Figure 5. Turn-On Time

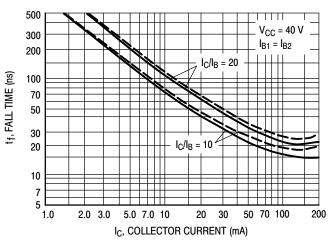
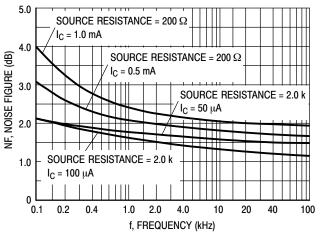



Figure 6. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

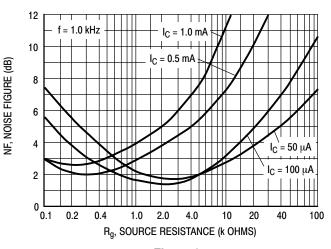
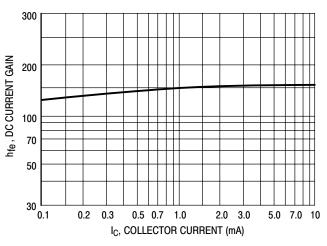



Figure 7.

Figure 8.

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

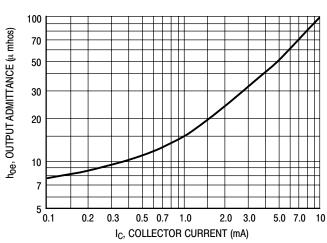
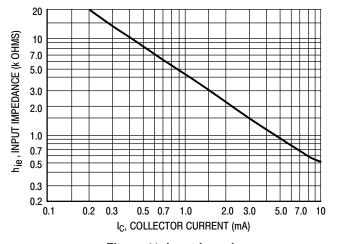



Figure 9. Current Gain

Figure 10. Output Admittance

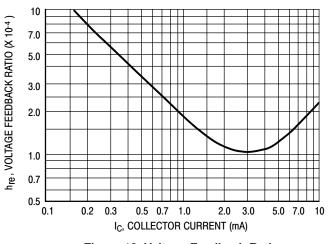


Figure 11. Input Impedance

Figure 12. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

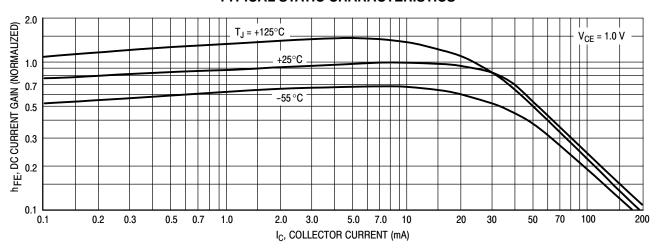


Figure 13. DC Current Gain

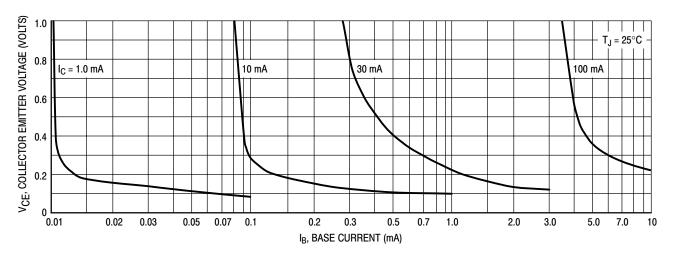


Figure 14. Collector Saturation Region

Figure 15. "ON" Voltages

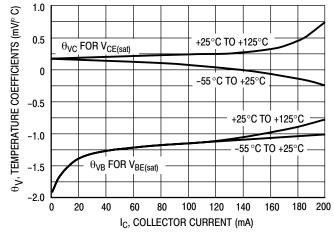
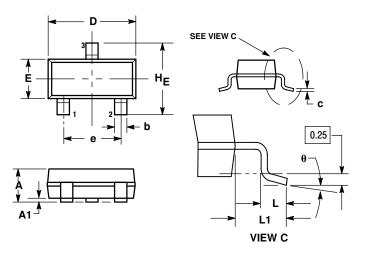
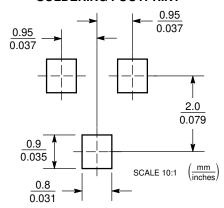



Figure 16. Temperature Coefficients

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AN**

NOTES


- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 318-01 THRU -07 AND -09 OBSOLETE, NEW STANDARD 318-08.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
С	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	0.094	0.104

STYLE 6:

- PIN 1. BASE 2. EMITTER
 - COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.