

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

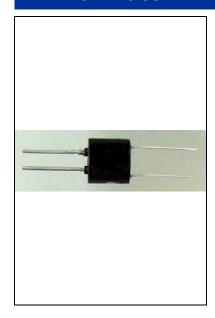
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

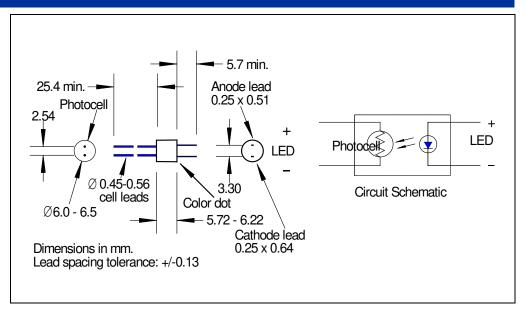
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





WWW.LUNAINC.COM

Precision – Control – Results

DESCRIPTION

This optocoupler consists of an LED input optically coupled to a photocell. The photocell resistance is high when the LED current is "off" and low resistance when the LED current is "on".

RELIABILITY

CdS/CdSe photo resistors are temperature sensitive, it should be noted that operation of the photocell above $+75^{\circ}\text{C}$ does not usually lead to catastrophic failure but the photoconductive surface may be damaged leading to irreversible changes in sensitivity

Contact Luna for recommendations on specific test conditions and procedures.

FEATURES

- Compact, moisture resistant package
- Low LED current
- Passive resistance output

APPLICATIONS

Industrial sensing

ABSOLUTE MAXIMUM RATINGS

SYMBOL	MIN		MAX	UNITS	(TA)= 23°C UNLESS OTHERWISE NOTED
Isolation Voltage	-	-	2000	V	-
Operating Temperature	-40	to	+75	°C	-
Storage Temperature	-40	to	+75	°C	-
Soldering Temperature	-	-	+260	°C	>0.05" from case for > 5 sec.

WWW.LUNAINC.COM

Precision – Control – Results

OPTO-ELECTRICAL PARAMETERS

T_a = 23°C UNLESS NOTED OTHERWISE

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS				
LED									
Forward Current	1	-	-	4.0	mA				
Forward Current	I _f = 16mA	-	-	2.5	V				
Reverse Current	$V_R = 4V$	-	-	3.0	μΑ				
CELL									
Maximum Cell Voltage	Peak AC or DC	-	-	60	V				
Power Dissipation	1	-	-	50	mW				
COUPLED									
On- Resistance	$I_f = 16 \text{ mA}^2$	-	-	40	Ω				
Off Resistance	10 sec after I _f = 0 mA, 5 V dc on cell	500	-	-	ΚΩ				
Rise Time	Time for the dark to light change in conductance to reach 63% of its final value	-	55	-	msec				
Decay Time	Time to reach $100K\Omega$ after removal of $I_f = 16mA$	-	80	-	msec				
Cell Temp. Coefficient	$I_f = > 5 \text{ mA}$	-	0.7	-	%/°C				

NOTE:

- Derate linearly to 0 at 75°C 1.
- The Rise Time, TR, is the time required for the dark to light change in conductance to reach 63% of its final value. Print "**NSL-32**" and date code "**YYWW**"