

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

20 V, 5 A, Low V_{CE(sat)} PNP Transistor

ON Semiconductor's e²PowerEdge family of low V_{CE(sat)} transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{\text{CE(sat)}}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

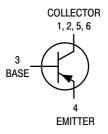
MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V_{CEO}	-20	Vdc
Collector-Base Voltage	V_{CBO}	-30	Vdc
Emitter-Base Voltage	V _{EBO}	-6.0	Vdc
Collector Current - Continuous	Ic	-3.0	Adc
Collector Current - Peak	I _{CM}	-5.0	Α
Electrostatic Discharge	ESD	HBM Class 3B MM Class C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Total Device Dissipation, T _A = 25°C Derate above 25°C	P _D (Note 1)	545 4.3	mW mW/°C	
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	230	°C/W	
Total Device Dissipation P_D (Note 2) $T_A = 25^{\circ}C$		1.06	W	
Derate above 25°C		8.5	mW/°C	
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 2)	118	°C/W	
Thermal Resistance, Junction-to-Lead #1	$R_{\theta JL}$ (Note 1) $R_{\theta JL}$ (Note 2)	48 40	°C/W °C/W	
Total Device Dissipation (Single Pulse < 10 sec.)	P _{Dsingle} (Note 2)	1.75	W	
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- FR-4 @ 100 mm², 2 oz copper traces.
 FR-4 @ 500 mm², 2 oz copper traces.

ON Semiconductor

http://onsemi.com

20 VOLTS **5.0 AMPS** PNP LOW $V_{CE(sat)}$ TRANSISTOR EQUIVALENT $R_{DS(on)}$ 78 m Ω

TSOP-6 **CASE 318G** STYLE 6

DEVICE MARKING

VS1 = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS20300MR6T1G	TSOP-6 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS	<u>,</u>	•		•	•
Collector – Emitter Breakdown Voltage (I _C = -10 mAdc, I _B = 0)	V _{(BR)CEO}	-20		_	Vdc
Collector – Base Breakdown Voltage (I _C = -0.1 mAdc, I _E = 0)	V _{(BR)CBO}	-30		-	Vdc
Emitter – Base Breakdown Voltage $(I_E = -0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	-6.0		-	Vdc
Collector Cutoff Current (V _{CB} = -20 Vdc, I _E = 0)	Ісво	-		-0.1	μAdc
Collector-Emitter Cutoff Current (V _{CES} = -20 Vdc)	I _{CES}	-		-0.1	μAdc
Emitter Cutoff Current (V _{EB} = -6.0 Vdc)	I _{EBO}	-		-0.1	μAdc
ON CHARACTERISTICS	<u>.</u>				
DC Current Gain $^{(1)}$ ($I_C = -1.0 \text{ A}, V_{CE} = -1.5 \text{ V}$) ($I_C = -1.5 \text{ A}, V_{CE} = -2.0 \text{ V}$) ($I_C = -2.0 \text{ A}, V_{CE} = -2.0 \text{ V}$)	h _{FE}	100 100 100	230	- 400 -	
Collector – Emitter Saturation Voltage (Note 3) $ \begin{pmatrix} I_C = -0.10 \text{ A}, I_B = -0.010 \text{ A} \end{pmatrix} $ $ \begin{pmatrix} I_C = -1.0 \text{ A}, I_B = -0.010 \text{ A} \end{pmatrix} $ $ \begin{pmatrix} I_C = -2.0 \text{ A}, I_B = -0.02 \text{ A} \end{pmatrix} $	V _{CE(sat)}	- - -	-0.010 -0.127 -0.250	-0.015 -0.145 -0.320	V
Base – Emitter Saturation Voltage (Note 3) $(I_C = -1A, I_B = -0.010 A)$	V _{BE(sat)}	_	_	-0.85	V
Base – Emitter Turn-on Voltage (Note 3) (I _C = -2.0 A, V _{CE} = -3.0 V)	V _{BE(on)}	-	-	-0.875	V
Cutoff Frequency (I _C = -100 mA, V _{CE} = -5.0 V, f = 100 MHz)	f _T	100	_	-	MHz
Input Capacitance (V _{EB} = -0.5 V, f = 1.0 MHz)	C _{IBO}	_		650	pF
Output Capacitance (V _{CB} = -3.0 V, f = 1.0 MHz)	C _{OBO}	-		100	pF

^{3.} Pulsed Condition: Pulse Width \leq 300 μ sec, Duty Cycle \leq 2%.

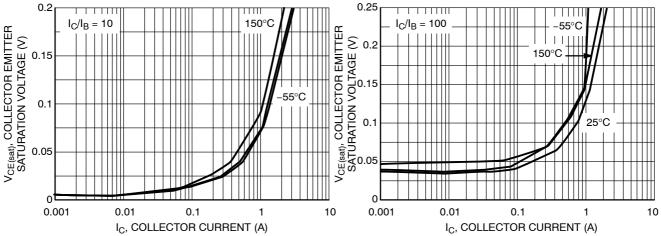


Figure 1. Collector Emitter Saturation Voltage versus Collector Current

Figure 2. Collector Emitter Saturation Voltage versus Collector Current

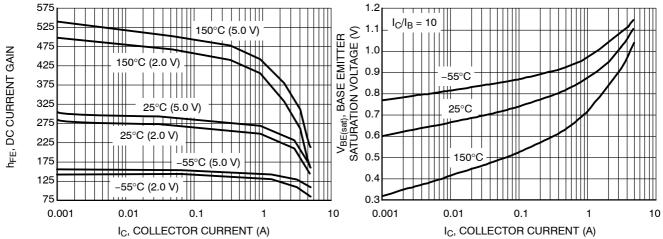


Figure 3. DC Current Gain versus Collector Current

Figure 4. Base Emitter Saturation Voltage versus Collector Current

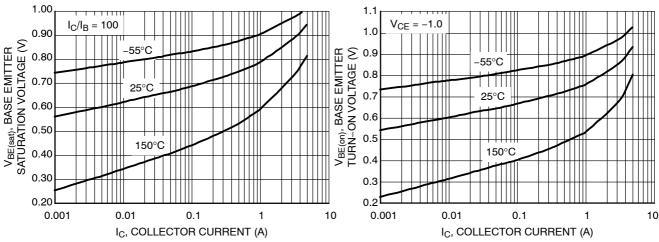


Figure 5. Base Emitter Saturation Voltage versus Collector Current

Figure 6. Base Emitter Turn-On Voltage versus Collector Current

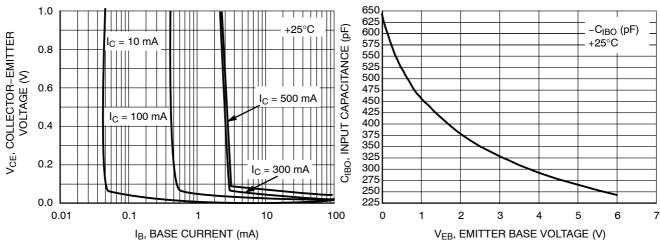


Figure 7. Saturation Region

Figure 8. NSS20300MR6T1G Input Capacitance

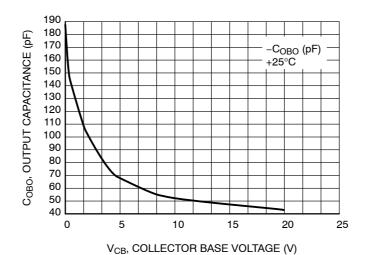
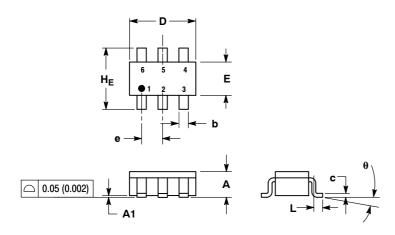
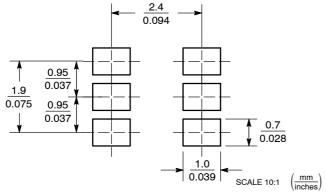



Figure 9. NSS20300MR6T1G Output Capacitance

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 **ISSUE T**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.38	0.50	0.010	0.014	0.020
С	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.30	1.50	1.70	0.051	0.059	0.067
е	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.75	3.00	0.099	0.108	0.118
θ	0°	-	10°	0°	-	10°

- STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR

 - 3. BASE 4. EMITTER COLLECTOR
 - COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and war engineer trademarks of semiconductor components industries, Ite (SciLLC) solitate services are injective to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative