mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Complementary 40 V, 6.0 A, Low V_{CE(sat)} Transistor

ON Semiconductor's e²PowerEdge family of low V_{CE(sat)} transistors are surface mount devices featuring ultra low saturation voltage (V_{CE(sat)}) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Rating		Symbol	Мах	Unit	
Collector-Emitter Voltage	NPN PNP	V _{CEO}	40 40	Vdc	
Collector-Base Voltage	NPN PNP	V _{CBO}	40 _40	Vdc	
Emitter-Base Voltage	NPN PNP	V _{EBO}	6.0 –7.0	Vdc	
Collector Current – Continuous	NPN PNP	Ι _C	3.0 –3.0	A	
Collector Current – Peak	NPN PNP	I _{CM}	6.0 -6.0	A	
Electrostatic Discharge		ESD	HBM Class 3B MM Class C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

40 VOLTS, 6.0 AMPS COMPLEMENTARY LOW V_{CE(sat)} TRANSISTOR EQUIVALENT $R_{DS(on)}$ 80 m Ω

DEVICE MARKING

STYLE 16

WW = Work Week

A Y

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS40302PDR2G	SOIC–8 (Pb–Free)	2500 / Tape & Reel
NSV40302PDR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit			
SINGLE HEATED						
Total Device Dissipation (Note 1)	P _D	576	mW			
T _A = 25°C Derate above 25°C		4.6	mW/°C			
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{θJA}	217	°C/W			
Total Device Dissipation (Note 2)	P _D	676	mW			
Derate above 25°C		5.4	mW/°C			
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{θJA}	185	°C/W			
DUAL HEATED (Note 3)						
Total Device Dissipation (Note 1)	PD	653	mW			
Derate above 25°C		5.2	mW/°C			
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{θJA}	191	°C/W			
Total Device Dissipation (Note 2)	PD	783	mW			
$T_A = 23 \text{ G}$ Derate above 25°C		6.3	mW/°C			
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	160	°C/W			
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	۵°C			

FR-4 @ 10 mm², 1 oz. copper traces, still air.
FR-4 @ 100 mm², 1 oz. copper traces, still air.
Dual heated values assume total power is the sum of two equally powered devices.

NPN ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	40	-	-	Vdc
Collector – Base Breakdown Voltage $(I_C = 0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	40	_	_	Vdc
Emitter – Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	6.0	_	_	Vdc
Collector Cutoff Current ($V_{CB} = 40$ Vdc, $I_E = 0$)	I _{СВО}	_	_	0.1	μAdc
Emitter Cutoff Current (V _{EB} = 6.0 Vdc)	I _{EBO}	_	_	0.1	μAdc
ON CHARACTERISTICS					•
DC Current Gain (Note 5) $(I_C = 10 \text{ mA}, V_{CE} = 2.0 \text{ V})$ $(I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V})$ $(I_C = 1.0 \text{ A}, V_{CE} = 2.0 \text{ V})$ $(I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V})$	h _{FE}	200 200 180 180	400 350 340 320	- - - -	
	V _{CE(sat)}	- - - -	0.008 0.044 0.080 0.082	0.011 0.060 0.115 0.115	V
Base – Emitter Saturation Voltage (Note 5) $(I_C = 1.0 \text{ A}, I_B = 0.01 \text{ A})$	V _{BE(sat)}	_	0.780	0.900	V
Base – Emitter Turn–on Voltage (Note 5) $(I_C = 0.1 \text{ A}, V_{CE} = 2.0 \text{ V})$	V _{BE(on)}	_	0.650	0.750	V
Cutoff Frequency ($I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$)	f _T	100	_	_	MHz
Input Capacitance (V _{EB} = 0.5 V, f = 1.0 MHz)	Cibo	-	320	450	pF
Output Capacitance (V_{CB} = 3.0 V, f = 1.0 MHz)	Cobo	-	40	50	pF
SWITCHING CHARACTERISTICS					
Delay (V _{CC} = 30 V, I _C = 750 mA, I _{B1} = 15 mA)	t _d	-	-	100	ns
Rise (V _{CC} = 30 V, I _C = 750 mA, I _{B1} = 15 mA)	t _r	_	-	100	ns
Storage (V _{CC} = 30 V, I _C = 750 mA, I _{B1} = 15 mA)	ts	-	-	780	ns
Fall (V _{CC} = 30 V, I _C = 750 mA, I _{B1} = 15 mA)	t _f	_	-	110	ns

4. Pulsed Condition: Pulse Width = 300 μ sec, Duty Cycle $\leq 2\%$. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PNP ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage ($I_c = -10 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	-40	_	-	Vdc
Collector – Base Breakdown Voltage ($I_c = -0.1 \text{ mAdc}, I_E = 0$)	V _{(BR)CBO}	-40	_	-	Vdc
Emitter – Base Breakdown Voltage $(I_E = -0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	-7.0	_	-	Vdc
Collector Cutoff Current ($V_{CB} = -40$ Vdc, $I_E = 0$)	Ісво	-	_	-0.1	μAdc
Emitter Cutoff Current (V _{EB} = -6.0 Vdc)	I _{EBO}	-	_	-0.1	μAdc
ON CHARACTERISTICS					-
DC Current Gain (Note 5) $(I_{C} = -10 \text{ mA}, V_{CE} = -2.0 \text{ V})$ $(I_{C} = -500 \text{ mA}, V_{CE} = -2.0 \text{ V})$ $(I_{C} = -1.0 \text{ A}, V_{CE} = -2.0 \text{ V})$ $(I_{C} = -2.0 \text{ A}, V_{CE} = -2.0 \text{ V})$	h _{FE}	250 220 180 150	380 340 300 230	- - -	
Collector – Emitter Saturation Voltage (Note 5) ($I_{C} = -0.1 \text{ A}, I_{B} = -0.010 \text{ A}$) ($I_{C} = -1.0 \text{ A}, I_{B} = -0.100 \text{ A}$) ($I_{C} = -1.0 \text{ A}, I_{B} = -0.010 \text{ A}$) ($I_{C} = -2.0 \text{ A}, I_{B} = -0.200 \text{ A}$)	V _{CE(sat)}	- - - -	-0.013 -0.075 -0.130 -0.135	-0.017 -0.095 -0.170 -0.170	V
Base – Emitter Saturation Voltage (Note 5) ($I_c = -1.0 \text{ A}, I_B = -0.01 \text{ A}$)	V _{BE(sat)}	-	-0.780	-0.900	V
Base – Emitter Turn–on Voltage (Note 5) ($I_c = -0.1 \text{ A}, V_{cE} = -2.0 \text{ V}$)	V _{BE(on)}	-	-0.660	-0.750	V
Cutoff Frequency ($I_C = -100 \text{ mA}, V_{CE} = -5.0 \text{ V}, f = 100 \text{ MHz}$)	f _T	100	_	_	MHz
Input Capacitance ($V_{EB} = -0.5 V$, f = 1.0 MHz)	Cibo	-	250	300	pF
Output Capacitance ($V_{CB} = -3.0 \text{ V}$, f = 1.0 MHz)	Cobo	-	50	65	pF
SWITCHING CHARACTERISTICS					
Delay (V _{CC} = -30 V, I _C = -750 mA, I _{B1} = -15 mA)	t _d	-	-	60	ns
Rise (V _{CC} = -30 V, I _C = -750 mA, I _{B1} = -15 mA)	t _r	-	-	120	ns
Storage (V _{CC} = -30 V, I _C = -750 mA, I _{B1} = -15 mA)	t _s	-	-	400	ns
Fall (V _{CC} = -30 V, I _C = -750 mA, I _{B1} = -15 mA)	t _f	_	_	130	ns

5. Pulsed Condition: Pulse Width = 300 μ sec, Duty Cycle \leq 2%.

NPN TYPICAL CHARACTERISTICS

NPN TYPICAL CHARACTERISTICS

PNP TYPICAL CHARACTERISTICS

PNP TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 3
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 4 PER SIDE.
- PROTRUSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT 5
- MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW 6.
- STANDARD IS 751-07.

	MILLIMETERS		INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
в	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	1.27 BSC		0.050 BSC		
н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
ĸ	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

STYLE 16: PIN 1. EMITTER, DIE #1

BASE, DIE #1 EMITTER, DIE #2 2.

3.

BASE, DIE #2 4 5

- COLLECTOR, DIE #2 COLLECTOR, DIE #2 6.
- 7. COLLECTOR, DIE #1 8 COLLECTOR, DIE #1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and eventors and reacenable attorney for exactly are device a regression in use does not deverage in use does not event of diverse and the correct and event or indicent or parts and the application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application. Buye expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative