

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

60 V, 1 A, Low V_{CE(sat)} NPN Transistors

ON Semiconductor's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC-DC converters and LED lightning, power management...etc. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- NSV60101DMTWTBG Wettable Flanks Device
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector–Emitter Voltage	V _{CEO}	60	Vdc
Collector-Base Voltage	V_{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	6	Vdc
Collector Current – Continuous	I _C	1	Α
Collector Current – Peak	I _{CM}	2	Α

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction–to–Ambient (Notes 1 and 2)	$R_{\theta JA}$	55	°C/W
Total Power Dissipation per Package @ $T_A = 25^{\circ}C$ (Note 2)	P _D	2.27	W
Thermal Resistance Junction-to-Ambient (Note 3)	$R_{\theta JA}$	69	°C/W
Power Dissipation per Transistor @ T _A = 25°C (Note 3)	P _D	1.8	W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

- Per JESD51-7 with 100 mm² pad area and 2 oz. Cu (Dual Operation).
- 2. P_D per Transistor when both are turned on is one half of Total P_D or 1.13 Watts.
- 3. Per JESD51-7 with 100 mm² pad area and 2 oz. Cu (Single-Operation).

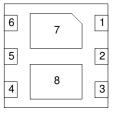
ON Semiconductor®

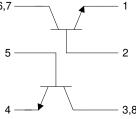
www.onsemi.com

60 Volt, 1 Amp NPN Low $V_{CE(sat)}$ Transistors

MARKING DIAGRAM

WDFN6 CASE 506AN


AN = Specific Device Code


M = Date Code

■ = Pb–Free Package

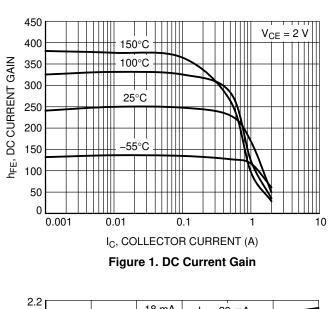
(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS60101DMTTBG	WDFN6 (Pb-Free)	3000/Tape & Reel
NSV60101DMTWTBG	WDFN6 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


Table 1. ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•	•
Collector–Emitter Breakdown Voltage (I _C = 10 mA, I _B = 0)	$V_{(BR)CEO}$	60			V
Collector-Base Breakdown Voltage (Ic = 0.1 mA, I _E = 0)	V _{(BR)CBO}	80			V
Emitter–Base Breakdown Voltage ($I_E = 0.1 \text{ mA}, I_C = 0$)	$V_{(BR)EBO}$	6			V
Collector Cutoff Current (V _{CB} = 60 V, I _E = 0)	I _{CBO}			100	nA
Emitter Cutoff Current (V _{BE} = 5.0 V)	I _{EBO}			100	nA
ON CHARACTERISTICS					
DC Current Gain (Note 4) $ (I_{C} = 100 \text{ mA}, V_{CE} = 2.0 \text{ V}) $ $ (I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}) $ $ (I_{C} = 1 \text{ A}, V_{CE} = 2.0 \text{ V}) $ $ (I_{C} = 2 \text{ A}, V_{CE} = 2.0 \text{ V}) $	h _{FE}	150 120 90 35	250 240 180 55		
Collector–Emitter Saturation Voltage (Note 4) ($I_C = 500$ mA, $I_B = 50$ mA) ($I_C = 1$ A, $I_B = 50$ mA) ($I_C = 1$ A, $I_B = 100$ mA)	V _{CE(sat)}		0.063 0.130 0.115	0.100 0.200 0.180	V
Base – Emitter Saturation Voltage (Note 4) $ (I_C = 500 \text{ mA}, I_B = 50 \text{ mA}) $ $ (I_C = 1 \text{ A}, I_B = 50 \text{ mA}) $ $ (I_C = 1 \text{ A}, I_B = 100 \text{ mA}) $	V _{BE(sat)}			1.0 1.0 1.1	V
Base–Emitter Turn–on Voltage (Note 4) (I _C = 500 mA, V _{CE} = 2 V)	V _{BE(on)}			0.9	V
DYNAMIC CHARACTERISTICS			•	•	
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}		10		pF
Cutoff Frequency ($I_C = 50 \text{ mA}$, $V_{CE} = 2.0 \text{ V}$, $f = 100 \text{ MHz}$)	f _T		180		MHz
SWITCHING TIMES					
Delay Time ($V_{CC} = 10 \text{ V}, I_C = 0.5 \text{ A}, I_{B1} = 25 \text{ mA}, I_{B2} = -25 \text{ mA}$)	t _d		13		ns
Rise Time ($V_{CC} = 10 \text{ V}, I_{C} = 0.5 \text{ A}, I_{B1} = 25 \text{ mA}, I_{B2} = -25 \text{ mA}$)	t _r		18		ns
Storage Time ($V_{CC} = 10 \text{ V}, I_C = 0.5 \text{ A}, I_{B1} = 25 \text{ mA}, I_{B2} = -25 \text{ mA}$)	t _s		700		ns
Fall Time ($V_{CC} = 10 \text{ V}, I_{C} = 0.5 \text{ A}, I_{B1} = 25 \text{ mA}, I_{B2} = -25 \text{ mA}$)	t _f		80		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Condition: Pulse Width = 300 μsec, Duty Cycle ≤ 2%

TYPICAL CHARACTERISTICS

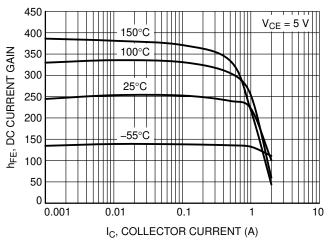
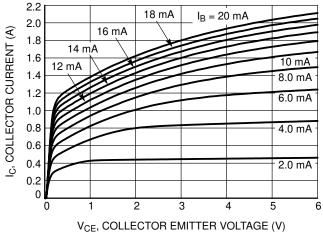



Figure 2. DC Current Gain

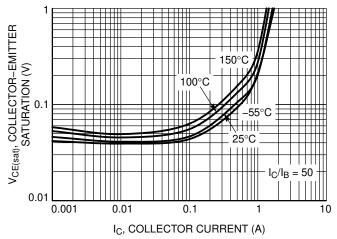
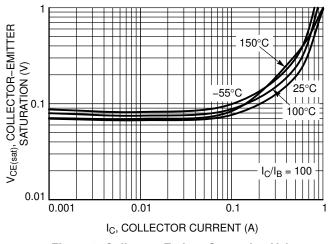



Figure 3. Collector Current as a Function of Collector Emitter Voltage

Figure 4. Collector-Emitter Saturation Voltage

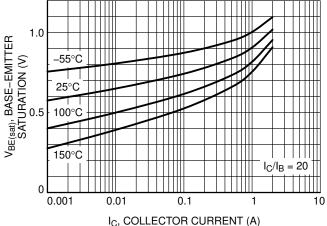
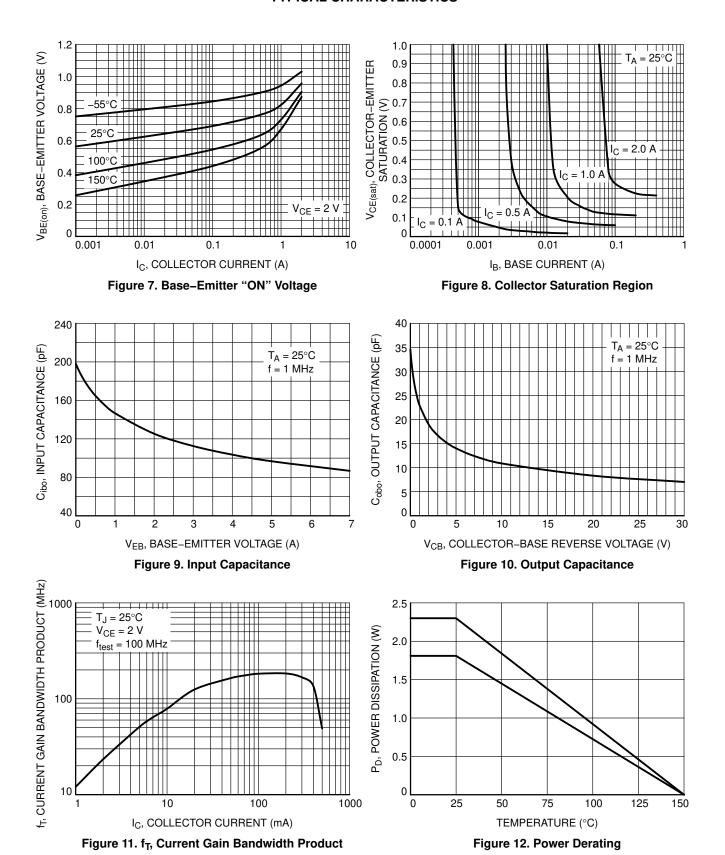



Figure 5. Collector-Emitter Saturation Voltage

Figure 6. Base-Emitter Saturation Voltage

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

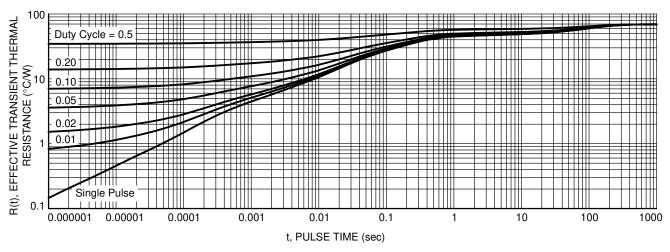


Figure 13. Thermal Resistance by Transistor

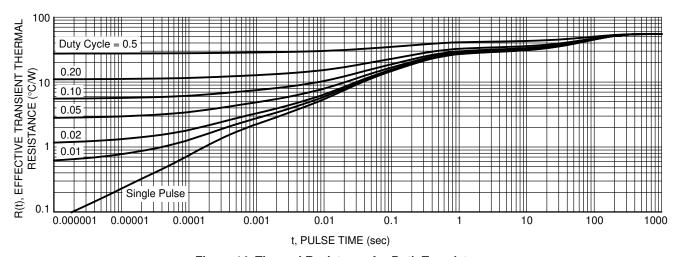
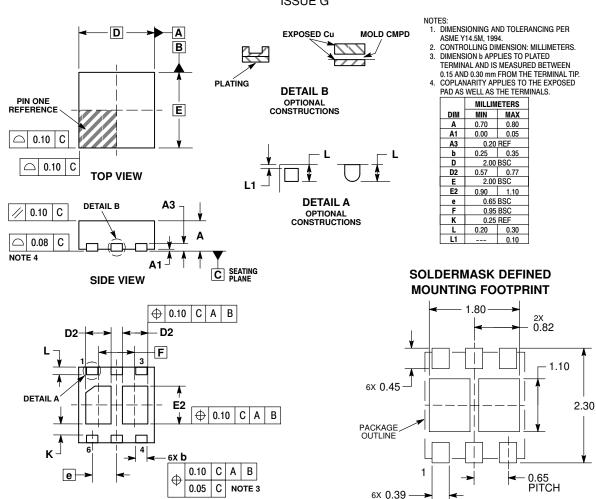



Figure 14. Thermal Resistance for Both Transistors

PACKAGE DIMENSIONS

WDFN6 2x2, 0.65P CASE 506AN **ISSUE G**

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

BOTTOM VIEW

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

DIMENSIONS: MILLIMETERS

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative