

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual Matched General Purpose Transistor

PNP Matched Pair

These transistors are housed in an ultra-small SOT563 package ideally suited for portable products. They are assembled to create a pair of devices highly matched in all parameters, eliminating the need for costly trimming. Applications are Current Mirrors; Differential, Sense and Balanced Amplifiers; Mixers; Detectors and Limiters.

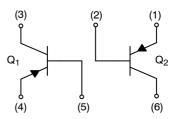
Features

- Current Gain Matching to 10%
- Base-Emitter Voltage Matched to 2 mV
- Drop-In Replacement for Standard Device
- AEC-Q101 Qualified and PPAP Capable
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These are Pb-Free Devices*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	-30	V
Collector - Base Voltage	V _{CBO}	-30	V
Emitter - Base Voltage	V _{EBO}	-5.0	V
Collector Current - Continuous	Ic	-100	mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

http://onsemi.com

SOT-563 CASE 463A PLASTIC

MARKING DIAGRAMS

UU = Device CodeM = Date CodePb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NST30010MXV6T1G	SOT-563 (Pb-Free)	4,000 / Tape & Reel
NSVT30010MXV6T1G	SOT-563 (Pb-Free)	4,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

THERMAL CHARACTERISTICS

Characteristic Parameter		Symbol	One Device Heated	Both Devices Heated	Unit
Total Device Dissipation, T _A = 25°C (Note 1) Derate above 25°C (Note 1) T _A = 25°C (Note 2) Derate above 25°C (Note 2)	Two Devices Heated Total Package	P _D	357 2.9 429 3.4	500 (250 ea) 4.0 661 (331 ea) 5.3	mW mW/°C mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	One Heated Device R _{θJA} 350 291			250 189	°C/W
Thermal Resistance Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	Unheated Device Heated by Heated Device		149 88	- -	°C/W
Thermal Resistance Junction-to-Lead (Note 1) Junction-to-Lead (Note 2)	Lead Attached to Heated Device		128 152	76 85	°C/W
Thermal Resistance Junction-to-Lead (Note 1) Junction-to-Lead (Note 2)	Heated Device Heating Lead Attached to Unheated Device	$\Psi_{\sf JL}$	224 222	- -	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150		°C

^{1.} PCB with 51 square millimeter of 2 oz (0.070mm thick) copper heat spreading connected to package leads. Mounted on a FR4 PCB 76x76x1.5mm Single layer traces. Natural convection test according to JEDEC 51.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage, (I _C = -10 mA)	V _{(BR)CEO}	-30	-	_	V
Collector – Emitter Breakdown Voltage, ($I_C = -10 \mu A$, $V_{EB} = 0$)	V _{(BR)CES}	-30	-	-	V
Collector – Base Breakdown Voltage, (I _C = –10 μA)	V _{(BR)CBO}	-30	-	-	V
Emitter – Base Breakdown Voltage, ($I_E = -1.0 \mu A$)	V _{(BR)EBO}	-5.0	-	-	V
Collector Cutoff Current ($V_{CB} = -30 \text{ V}$) ($V_{CB} = -30 \text{ V}$, $T_A = 150^{\circ}\text{C}$)	Ісво		- -	-15 -4.0	nA μA

ON CHARACTERISTICS

DC Current Gain $ \begin{array}{l} (I_C = -10 \ \mu A, \ V_{CE} = -5.0 \ V) \\ (I_C = -2.0 \ mA, \ V_{CE} = -5.0 \ V) \\ (I_C = -2.0 \ mA, \ V_{CE} = -5.0 \ V) \ (Note \ 3) \end{array} $	h _{FE}	270 420 0.9	- 520 1.0	- 800 -	-
Collector – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{CE(sat)}		1 1	-0.30 -0.60	٧
Base – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -1.0$ mA) ($I_C = -100$ mA, $I_B = -10$ mA)	V _{BE(sat)}	-	-0.75 -0.90	-	V
Base – Emitter On Voltage $(I_C = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$ $(I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ V})$ $(I_C = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$ (Note 4)	$V_{BE(on)}$ $V_{BE(1)} - V_{BE(2)}$	-0.60 - -	- - 1.0	-0.75 -0.82 2.0	V mV

SMALL-SIGNAL CHARACTERISTICS

Current – Gain – Bandwidth Product, (I _C = –10 mA, V _{CE} = –5 Vdc, f = 100 MHz)	f _T	100	_	_	MHz
Output Capacitance, (V _{CB} = -10 V, f = 1.0 MHz)	C _{ob}	_	-	4.5	pF
Noise Figure, (I _C = -0.2 mA, V _{CE} = -5 Vdc, R _S = 2 k Ω , f = 1 kHz, BW = 200 Hz)	NF	-	_	10	dB

h_{FE(1)}/h_{FE(2)} is the ratio of one transistor compared to the other transistor within the same package. The smaller h_{FE} is used as numerator.
 V_{BE(1)} - V_{BE(2)} is the absolute difference of one transistor compared to the other transistor within the same package.

^{2.} PCB with 250 square millimeter of 2 oz (0.070mm thick) copper heat spreading connected to package leads. Mounted on a FR4 PCB 76x76x1.5mm Single layer traces. Natural convection test according to JEDEC 51.

TYPICAL CHARACTERISTICS

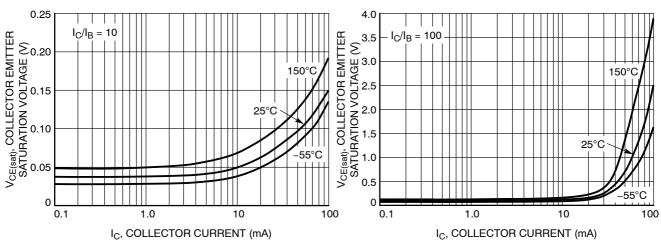


Figure 1. Collector Emitter Saturation Voltage vs. Collector Current

Figure 2. Collector Emitter Saturation Voltage vs. Collector Current

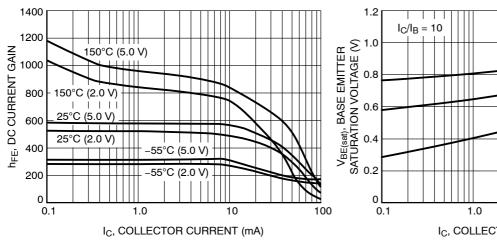


Figure 3. DC Current Gain vs. Collector Current

1 1.0 10 100 I_C, COLLECTOR CURRENT (mA)

-55°C

Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

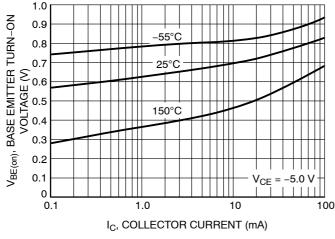


Figure 5. Base Emitter Turn-On Voltage vs.
Collector Current

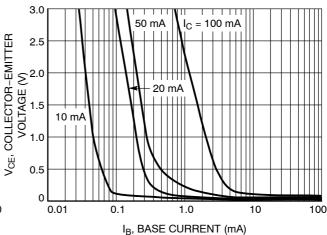
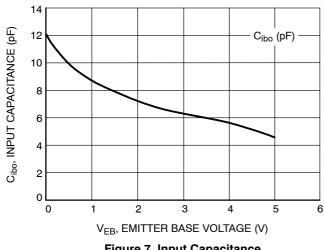



Figure 6. Saturation Region @ 25°C

TYPICAL CHARACTERISTICS

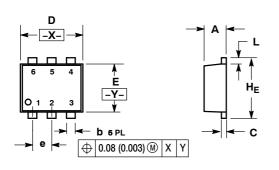

Cobo, OUTPUT CAPACITANCE (pF) 6 Cobo (pF) 5 4 3 5 10 15 20 0 25 V_{CB}, COLLECTOR BASE VOLTAGE (V)

Figure 7. Input Capacitance

Figure 8. Output Capacitance

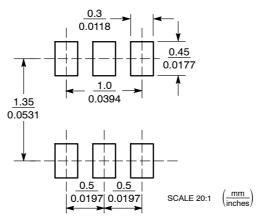
PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A-01 ISSUE F

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETERS MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.021	0.023	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.12	0.18	0.003	0.005	0.007	
D	1.50	1.60	1.70	0.059	0.062	0.066	
E	1.10	1.20	1.30	0.043	0.047	0.051	
е		0.5 BSC		0.02 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.50	1.60	1.70	0.059	0.062	0.066	


BASE 2 COLLECTOR 1

PIN 1. EMITTER 1 2. BASE 1

COLLECTOR 2 4. EMITTER 2

SOLDERING FOOTPRINT*

STYLE 1:

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative